OPC Unified Architecture, Part 6
56
Release Candidate 1.00.08

OPC Unified Architecture Specification
Part 6: Mappings
1 Scope

This document specifies the OPC Unified Architecture (OPC UA) mapping between the security model described in Part 2, the abstract service definitions described Part 4 and the data structures defined in Part 5 and the physical network protocols that can be used to implement the OPC UA specification.

2 Reference Documents

Part 1: IEC 62541-1 OPC UA Specification: Part 1 – Overview and Concepts

Part 2: IEC 62541-2 OPC UA Specification: Part 2 – Security Model

Part 3: IEC 62541-3 OPC UA Specification: Part 3 – Address Space Model

Part 4: IEC 62541-4 OPC UA Specification: Part 4 – Services

Part 5: IEC 62541-5 OPC UA Specification: Part 5 – Information Model

Part 7: IEC 62541-7 OPC UA Specification: Part 7 – Profiles

XML Schema Part 1: XML Schema Part 1: Structures
http://www.w3.org/TR/xmlschema-1/
XML Schema Part 2: XML Schema Part 2: Datatypes

http://www.w3.org/TR/xmlschema-2/
SOAP Part 1: SOAP Version 1.2 Part 1: Messaging Framework

http://www.w3.org/TR/soap12-part1/
SOAP Part 2: SOAP Version 1.2 Part 2: Adjuncts

http://www.w3.org/TR/soap12-part2/
XML Encryption: XML Encryption Syntax and Processing

http://www.w3.org/TR/xmlenc-core/
XML Signature: XML-Signature Syntax and Processing

http://www.w3.org/TR/xmldsig-core/
WS Security: SOAP Message Security 1.1
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
WS Addressing: Web Services Addressing (WS-Addressing)
http://www.w3.org/Submission/ws-addressing/
WS Trust: WS Trust 1.3

http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.html
WS Secure Conversation: WS Secure Conversation 1.3
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.html
WS Security Policy: WS Security Policy 1.2
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
SSL/TLS: RFC 2246 - The TLS Protocol Version 1.0

http://www.ietf.org/rfc/rfc2246.txt
X509: X.509 Public Key Certificate Infrastructure

http://www.itu.int/rec/T-REC-X.509-200003-I/e
WS-I Basic Profile 1.1: WS-I Basic Profile Version 1.1
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
WS-I Basic Security Profile 1.1: WS-I Basic Security Profile Version 1.1
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
HTTP: RFC 2616 - Hypertext Transfer Protocol - HTTP/1.1
http://www.ietf.org/rfc/rfc2616.txt
HTTPS: RFC 2818 - HTTP Over TLS

http://www.ietf.org/rfc/rfc2818.txt
Base64: RFC 3548 - The Base16, Base32, and Base64 Data Encodings

http://www.ietf.org/rfc/rfc3548.txt
X690 : ITU-T X.690 - Basic (BER), Canonical (CER) and Distinguished (DER) Encoding Rules

http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
X200 : ITU-T X.200 – Open Systems Interconnection – Basic Reference Model
http://www.itu.int/rec/T-REC-X.200-199407-I/en
IEEE-754: Standard for Binary Floating-Point Arithmetic

http://grouper.ieee.org/groups/754/
HMAC: HMAC - Keyed-Hashing for Message Authentication
http://www.ietf.org/rfc/rfc2104.txt
PKCS #1 : PKCS #1 - RSA Cryptography Specifications Version 2.0

http://www.ietf.org/rfc/rfc2437.txt
PKCS #12 : PKCS 12 v1.0: Personal Information Exchange Syntax
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf
FIPS 180-2: Secure Hash Standard (SHA)

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
FIPS 197: Advanced Encyption Standard (AES)

http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

UTF8: UTF-8, a transformation format of ISO 10646

http://tools.ietf.org/html/rfc3629
RFC 3280: RFC 3280 - X.509 Public Key Infrastructure Certificate and CRL Profile
http://www.ietf.org/rfc/rfc3280.txt
IPSec: RFC 2401 - Security Architecture for the Internet Protocol
http://tools.ietf.org/html/rfc2401
3 Terms, definitions, and conventions

3.1 OPC UA Part 1 terms

The following terms defined in Part 1 apply.

AddressSpace

Attribute
Certificate

Message

Node

Profile

3.2 OPC UA Part 2 terms
The following terms defined in Part 2 apply.

OPC UA application

Authentication

Integrity

Authorization

X.509 Certificate
SoftwareCertificate

SecurityToken

SecureChannel

PublicKey

PrivateKey

Nonce
Application Certificate
Software Certificate
3.3 OPC UA Part 3 terms

The following terms defined in Part 3 apply.

BaseDataType

BaseObjectType

DataType

DataTypeEncoding
Structure
3.4 OPC UA Part 4 terms

The following terms defined in Part 4 apply.

SecurityMode (None, Sign and SignAndEncrypt)

3.5 OPC UA Mappings terms

3.5.1 Data Encoding

Data Encoding is way to serialize OPC UA messages and data structures.

3.5.2 Mapping

A Mapping specifies how to implement an OPC UA feature with a specific technology. For example, the OPC UA Binary Encoding is a Mapping that specifies how to serialize OPC UA data structures as sequences of bytes.

3.5.3 Security Protocol

A Security Protocol ensures the integrity and privacy of UA messages that are exchanged between OPC UA applications.
3.5.4 Stack

A Stack is a collection of software libraries that implement one or more Stack Profiles. Stacks have an API which hides the implementation details from the application developer.

3.5.5 Stack Profile

A StackProfile is a combination of DataEncodings, SecurityProtocol and TransportProtocol Mappings. OPC UA applications shall implement one or more StackProfiles and can only communicate with OPC UA applications that support a StackProfile that they support.

3.5.6 Transport Protocol
A Transport Protocol is a way to exchange serialized OPC UA messages between OPC UA applications.
3.6 Abbreviations and symbols

API
Application Programming Interface
ASN.1
Abstract Syntax Notation #1 (used in X690)

BP
WS-I Basic Profile Version

BSP
WS-I Basic Security Profile

CSV
Comma Separated Value (File Format)

HTTP
Hypertext Transfer Protocol
RST
Request Security Token

OID
Object Identifier (used with ASN.1)

RSTR
Request Security Token Response

SCT
Security Context Token
SHA1
Secure Hash Algorithm
SOAP
Simple Object Access Protocol
SSL
Secure Sockets Layer (Defined in SSL/TLS)
TCP
Transmission Control Protocol
TLS
Transport Layer Security (Defined in SSL/TLS)

UTF8
Unicode Transformation Format (8-bit) (Defined in UTF8
UA
Unified Architecture
UASC UA Secure Conversation
WS-*
The XML Web Services Specifications.

WSS
WS Security

WS-SC
WS Secure Conversation

XML
Extensible Markup Language

4 Overview

The other parts of the OPC UA specification are written to be independent of the technology used for implementation. This approach means OPC UA is a flexible specification that will continue to be applicable as technology evolves. On the other hand, this approach means that it is not possible to build an OPC UA application with the information contained in Parts 1 through 5 because important implementation details have been left out.

This document defines Mappings between the abstract specifications and technologies that can be used to implement them. The Mappings are organized into three groups: DataEncodings, SecurityProtocols and TransportProtocols. Different Mappings are combined together to create StackProfiles. All OPC UA applications shall implement at least one StackProfile and can only communicate with other OPC UA applications that implement the same StackProfile.

This document defines the DataEncodings in Clause 5, the SecurityProtocols in Clause 6 and the TransportProtocols in Clause 6.4.6. The StackProfiles are defined in Part 7.
All communication between OPC UA applications is based on the exchange of Messages. The parameters contained in the Messages are defined in Part 4, however, their format is specified by the DataEncoding and TransportProtocol. For this reason, each Message defined in Part 4 shall have a normative description which specifies exactly what shall be put on the wire. The normative descriptions are defined in the appendices.

A Stack is a collection of software libraries that implements one or more StackProfiles. The interface between an OPC UA application and the Stack is a non-normative API which hides the details of the Stack implementation. An API depends on a specific DevelopmentPlatform. Note that the datatypes exposed in the API for a DevelopmentPlatform may not match the datatypes defined by the specification because of limitations of the DevelopmentPlatform. For example, Java does not support unsigned integers which means any Java API will need to map unsigned integers onto a signed integer type.
Figure 1 illustrates the relationships between the different concepts defined in this document.

[image: image1.emf]Serialization Layer

UA Application

API

Secure Channel Layer

Encoded Message

Transport Layer

Secured Message

Development Platforms

.NET 3.0

ANSI C

JRE 5.0

Data Encodings

UA Binary

UA XML

Security Protocols

WS Secure Conversation

UA Secure Conversation

Transport Protocols

UA TCP

SOAP/HTTP

Security Transforms

Signing

Encryption

WSDL and XML Schema

UA Binary Schema

Client

Server

Mappings

Stack

Wire Protocol

Figure 1 – The OPC UA Stack Overview
The layers described in this specification do not correspond to layers in the OSI 7 layer model [X200]. Each OPC UA StackProfile should be treated as a single Layer 7 (Application) protocol that is built on an existing Layer 5, 6 or 7 protocol such as TCP/IP, TLS or HTTP.

The SecureChannel layer is always present even if the SecurityMode is None. In this situation, no security is applied but the SecurityProtocol implementation shall maintain a logical channel with a unique identifier. Users and Administrators are expected to understand that a SecureChannel with SecurityMode set to None cannot be trusted unless the Application is operating on a physically secure network or a low level protocol such as IPSec is being used.

5 Data Encoding

5.1 General

5.1.1 Overview

This specification defines two data encodings: OPC UA Binary and OPC UA XML. It describes how to construct messages using each of these encodings.
5.1.2 Built-in Types

All OPC UA DataEncodings are based on rules that are defined for a standard set of built-in types. These built-in types are then used to construct structures, arrays and messages. The built-in types are described in Table 1.
Table 1 – Built-in Data Types

	ID
	Name
	Description

	1
	Boolean
	A two-state logical value (true or false).

	2
	SByte
	An integer value between -128 and 127.

	3
	Byte
	An integer value between 0 and 256.

	4
	Int16
	An integer value between -32768 and 32767.

	5
	UInt16
	An integer value between 0 and 65535.

	6
	Int32
	An integer value between – 2147483648 and 2147483647.

	7
	UInt32
	An integer value between 0 and 4294967295.

	8
	Int64
	An integer value between – 9223372036854775808 and 9223372036854775807

	9
	UInt64
	An integer value between 0 and 18446744073709551615.

	10
	Float
	An IEEE single precision (32 bit) floating point value.

	11
	Double
	An IEEE double precision (64 bit) floating point value.

	12
	String
	A sequence of Unicode characters.

	13
	DateTime
	An instance in time.

	14
	Guid
	A 16 byte value that can be used as a globally unique identifier.

	15
	ByteString
	A sequence of octets.

	16
	XmlElement
	An XML element.

	17
	NodeId
	An identifier for a node in the address space of an OPC UA server.

	18
	ExpandedNodeId
	A NodeId that allows the namespace URI to be specified instead of an index.

	19
	StatusCode
	A numeric identifier for a error or condition that is associated with a value or an operation.

	20
	QualifiedName
	A name qualified by a namespace.

	21
	LocalizedText
	Human readable text with an optional locale identifier.

	22
	ExtensionObject
	A structure that contains an application specific data type that may not be recognized by the receiver.

	23
	DataValue
	A data value with an associated status code and timestamps.

	24
	Variant
	A union of all of the types specified above.

	25
	DiagnosticInfo
	A structure that contains detailed error and diagnostic information associated with a StatusCode.

Most of these data types are the same as the abstract types defined in Part 3 and Part 4, however, the ExtensionObject and Variant types are defined in this document. In addition, this document defines a representation for the Guid type defined in Part 3.

5.1.3 Guid

A Guid is a 16-byte globally unique identifier with the layout shown in Table 2.

Table 2 – Guid Structure

	Component
	Data Type

	Data1
	UInt32

	Data2
	UInt16

	Data3
	UInt16

	Data4
	Byte[8]

Guid values may be represented as a string in this form:

<Data1>-<Data2>-<Data3>-<Data4[0:1]>-<Data4[2:7]>
Where Data1 is 8 characters wide, Data2 and Data3 are 4 characters wide and each Byte in Data4 is 2 characters wide. Each value is formatted as a hexadecimal number padded with zeros. A typical Guid value would look like this when formatted as a string:

C496578A-0DFE-4b8f-870A-745238C6AEAE

5.1.4 ExtensionObject

An ExtensionObject is a container for any complex data types which cannot be encoded as one of the other built-in data types. The ExtensionObject contains a complex value serialized as a sequence of bytes or as an XML element. It also contains an identifier which indicates what data it contains and how it is encoded.

Complex data types are represented in a Server address space as sub-types of the Structure data type. The encodings available for any given complex data type are represented as a DataTypeEncoding Object in the Server address space. The NodeId for the DataTypeEncoding Object is the identifier stored in the ExtensionObject. Clause 5.8 of Part 3 describes how DataTypeEncoding node are related to other nodes the address space.

Server implementers should use namespace qualified numeric NodeIds for any DataTypeEncoding Objects they define. This will minimize the overhead introduced by packing complex data values into ExtensionObjects.

5.1.5 Variant

A Variant is a union of all built-in data types including an ExtensionObject. Variants can also contain arrays of any of these built-in types. Variants are used to store any value or parameter with a data type of BaseDataType or one of its subtypes.

Variants can be empty. An empty Variant is described as having a Null value and should be treated like a NULL column in a SQL database. A Null value in a Variant may not be the same as a Null value for data types that support Nulls such as Strings. For this reason, all DataEncodings shall preserve this distinction when encoding Variants.

Variants can contain arrays of Variants but they cannot directly contain another Variant.

Variants cannot contain arrays of Bytes. Parameters that are defined as arrays of Bytes are stored as ByteStrings in a Variant.

DiagnosticInfo type only has meaning when returned in a response message with an associated StatusCode. As a result, Variants cannot contain instances of DiagnosticInfo.
Variables with a DataType of BaseDataType are mapped to a Variant, however, the ValueRank and ArrayDimensions Attributes place restrictions on what is allowed in the Variant. For example, if the ValueRank is Scalar then the Variant may only contain scalar values.
5.2 OPC UA Binary

5.2.1 General

The OPC UA Binary Encoding is a data format developed to meet the performance needs of OPC UA applications. This format is designed primarily for fast encoding and decoding, however, the size of the encoded data on the wire was also a consideration.

The OPC UA Binary Encoding relies on several primitive data types with clearly defined encoding rules that can be sequentially written to or read from a binary stream. A structure is encoded by sequentially writing the encoded form of each field. If a given field is also a structure then the values of its fields are written sequentially before writing the next field in the containing structure. All fields shall be written to the stream even if they contain Null values. The encodings for each primitive type specify how to encode a Null value for the type.

The OPC UA Binary Encoding does not include any type or field name information because all OPC UA applications are expected to have advance knowledge of the services and structures that they support. An exception is an ExtensionObject which provides an identifier and a size for the complex structure it represents. This allows a decoder to skip over types that it does not recognize.

5.2.2 Built-in Types
5.2.2.1 Boolean

A Boolean value shall be encoded as a single byte where a value of 0 (zero) is false and any non-zero value is true.

Encoders shall use the value of 1 to indicate a true value; however, decoders shall treat any non-zero value as true.

5.2.2.2 Integer

All integer types shall be encoded as little endian values where the least significant byte appears first in the stream.

The Figure 2 illustrates how the value 1,000,000,000 (Hex: 3B9ACA00) should be encoded as a 32 bit integer in the stream.

[image: image2.emf]00 CA 9A 3B

0 1 2 3 4

Figure 2 – Encoding Integers in a Binary Stream

5.2.2.3 Floating Point

All floating point values shall be encoded with the appropriate IEEE-754 binary representation which has three basic components: the sign, the exponent, and the fraction. The bit ranges assigned to each component depend on the width of the type. Table 3 lists the bit ranges for the supported floating point types.
Table 3 – Supported Floating Point Types
	Name
	Width (bits)
	Fraction
	Exponent
	Sign

	Float
	32
	0-22
	23-30
	31

	Double
	64
	0-51
	52-62
	63

In addition, the order of bytes in the stream is significant. All floating point values shall be encoded with the least significant byte appearing first (i.e. little endian).

The Figure 3 illustrates how the value -6.5 (Hex: C0D00000) should be encoded as a Float.

[image: image3.emf]00 00 D0 C0

0 1 2 3 4

Figure 3 – Encoding Floating Points in a Binary Stream
5.2.2.4 String

All String values are encoded as a sequence of UTF8 characters without a null terminator and preceded by the length in bytes.

The length in bytes is encoded as Int32. A value of -1 is used to indicate a ‘null’ string.

Figure 4 illustrates how the multilingual string “水Boy” should be encoded in a byte stream.

[image: image4.emf]0 1 2

3 4 5 6

06 00 00 00

水

B0 B4 42 6F 79

Length

E6

B o y

7 8

9 10

Figure 4 – Encoding Strings in a Binary Stream
5.2.2.5 DateTime

A DateTime value shall be encoded as a 64-bit signed integer (see Clause 5.2.2.2) which represents the number of 100 nanosecond intervals since January 1, 1601 (UTC)
.
Not all platforms will be able to represent the full range of dates and times that can be represented with this encoding. For example, the UNIX time_t structure only has a 1 second resolution and cannot represent dates prior to 1970. For this reason, a number of rules shall be applied when dealing with date/time values that exceed the dynamic range of a platform. These rules are:

1) A date/time value is encoded as 0 if either:

a. The value equal to or earlier than 1601-01-01 12:00AM

b. The value is the earliest date that can be represented with the platform’s encoding.

2) A date/time is encoded as the maximum value for an Int64 if either:

a. The value is equal to or greater than 9999-01-01 11:59:59PM

b. The value is the latest date that can be represented with the platform’s encoding

3) A date/time is decoded as the earliest time that can be represented on the platform if either:

a. The encoded value is 0

b. The encoded value represents a time earlier than the earliest time that can be represented with the platform’s encoding.

4) A date/time is decoded as the latest time that can be represented on the platform if either:

a. The encoded value is the maximum value for an Int64
b. The encoded value represents a time later than the latest time that can be represented with the platform’s encoding.

These rules imply that the earliest and latest times that can be represented on a given platform are invalid date/time values and should be treated that way by applications.

A decoder shall truncate the value if a decoder encounters a DateTime value with a resolution that is greater than the resolution supported on the platform.

5.2.2.6 Guid

A Guid is encoded a the structure shown in Table 2. The fields are encoded sequentially according to the data type for the field.

Figure 5 illustrates how the Guid “72962B91-FA75-4ae6-8D28-B404DC7DAF63” should be encoded in a byte stream.

[image: image5.emf]0 1 2

3 4 5 6

91 2B 96 72 FA E6 4A 8D 28

Data1

75

7 8

9 10

B4

11

04 DC 7D

12

13 14

AF

15

Data2 Data3 Data4

63

16

Figure 5 – Encoding Guids in a Binary Stream
5.2.2.7 ByteString
A ByteString is encoded as sequence of bytes preceded by its length in bytes. The length is encoded as a 32-bit signed integer as described above.

If the length of the byte string is -1 then the byte string is ‘null’.

5.2.2.8 XmlElement

An XmlElement is an XML fragment serialized as UTF-8 string and then encoded as ByteString
Figure 6 illustrates how the XmlElement “<A>Hot水” should be encoded in a byte stream.

.
[image: image6.emf]0 1 2

3 4 5 6

3C 41 3E 48 74 E6 B0 B4 3C

<A>

6F

7 8

9 10

3F

11

41 3E

12

13

Hot

水

0D 00 00 00

Length

14 15 16 17

Figure 6 – Encoding XmlElements in a Binary Stream
5.2.2.9 NodeId

The components of a NodeId are described the Table 4.

Table 4 – NodeId Components
	Name
	Data Type
	Description

	Namespace
	UInt16
	The index for a namespace URI.

An index of 0 is used for OPC UA defined NodeIds.

	IdentifierType
	Enum
	The format and data type of the identifier

The value may be one of the following:

NUMERIC
- the value is an UInteger;

STRING
- the value is String;

GUID
- the value is a Guid;

OPAQUE
- the value is a ByteString;

	Value
	*
	The identifier for a node in the address space of an OPC UA server.

The encoding of a NodeId varies according to the contents of the instance. For that reason the first byte of the encoded form indicates the format of the rest of the encoded NodeId. The possible encoding formats are shown in Table 5. The tables that follow describe the structure of the each possible format (they exclude the byte which indicates the format).

Table 5 – NodeId Encoding Values
	Name
	Value
	Description

	Two Byte
	0x00
	A numeric value that fits into the two byte representation.

	Four Byte
	0x01
	A numeric value that fits into the four byte representation.

	Numeric
	0x02
	A numeric value that does not fit into the two or four byte representations.

	String
	0x03
	A String value.

	Guid
	0x04
	A Guid value.

	ByteString
	0x05
	An opaque (ByteString) value.

	NamespaceUri Flag
	0x80
	See discussion of ExpandedNodeId in Clause 5.2.2.10.

	ServerIndex Flag
	0x40
	See discussion of ExpandedNodeId in Clause 5.2.2.10.

The standard NodeId encoding has the structure shown in Table 6. The standard encoding is used for all formats that do not have an explicit format defined.

Table 6 – Standard NodeId Binary Encoding
	Name
	Data Type
	Description

	Namespace
	UInt16
	The Namespace index.

	Identifier
	*
	The identifier which is encoded according to the following rules:

NUMERIC

UInt32

STRING

String

GUID

Guid

OPAQUE

ByteString

An example of a String NodeId with Namespace = 1 and Identifier = “Hot水” is shown in Figure 7.

[image: image7.emf]0 1 2

3 4 5 6

00 00 00 48 74 E6 B0 B4 6F

7 8

9 10 11

12

13

Hot

水

03 01 00 06

Length

Encoding Byte

Namespace

Figure 7 – A String NodeId
The Two Byte NodeId encoding has the structure shown in Table 7.

Table 7 – Two Byte NodeId Binary Encoding
	Name
	Data Type
	Description

	Identifier
	Byte
	The Namespace is the default OPC UA namespace (i.e. 0).

The Identifier Type is ‘Numeric’.

The Identifier shall be in the range 0 to 255.

An example of a Two Byte NodeId with Identifier = 72 is shown in Figure 8.

[image: image8.emf]0

72

1

2

Identifier

00

Encoding

Figure 8 – A Two Byte NodeId
The Four Byte NodeId encoding has the structure shown in Table 8.

Table 8 – Four Byte NodeId Binary Encoding
	Name
	Data Type
	Description

	Namespace
	Byte
	The Namespace shall be in the range 0-255.

	Identifier
	UInt16
	The Identifier Type is ‘Numeric’.

The Identifier shall be an integer in the range 0-65535.

An example of a Four Byte NodeId with Namespace = 5 and Identifier = 1025 is shown in Figure 9.

[image: image9.emf]0 1 2 3

4

01 05 01 04

Identifier

Encoding Byte Namespace

Figure 9 – A Four Byte NodeId
5.2.2.10 ExpandedNodeId

An ExpandedNodeId extends the NodeId structure by allowing the NamespaceUri to be explicitly specified instead of using the NamespaceIndex. The NamespaceUri is optional. If it is specified then the NamespaceIndex inside the NodeId shall be ignored.
The ExpandedNodeId is encoded by first encoding a NodeId as described in Clause 5.2.2.9 and then encoding NamespaceUri as a String.

An instance of an ExpandedNodeId may still use the NamespaceIndex instead of the NamespaceUri. In this case, the NamespaceUri is not encoded in the stream. The presence of the NamespaceUri in the stream is indicated by setting the NamespaceUri flag in the encoding format byte for the NodeId.

If the NamespaceUri is present then the encoder shall encode the NamespaceIndex as 0 in the stream when the NodeId portion is encoded. The unused NamespaceIndex is included in the stream for consistency,

An ExpandedNodeId may also have a ServerIndex which is encoded as a UInt32 after the NamespaceUri. The ServerIndex flag in the NodeId encoding byte indicates whether the ServerIndex is present in the stream. The ServerIndex is omitted if it is equal to zero.

The ExpandedNodeId encoding has the structure shown in Table 9.

Table 9 – ExpandedNodeId Binary Encoding
	Name
	Data Type
	Description

	NodeId
	NodeId
	The NamespaceUri and ServerIndex flags in the NodeId encoding indicate whether those fields are present in the stream.

	NamespaceUri
	String
	Not present if Null or Empty.

	ServerIndex
	UInt32
	Not present if 0.

5.2.2.11 StatusCode

A StatusCode is encoded as a UInt32.

5.2.2.12 DiagnosticInfo

A DiagnosticInfo structure is described in Part 4 Clause 7.8. It specifies a number of fields that could be missing. For that reason, the encoding uses a bit mask to indicate which fields are actually present in the encoded form.

As described in Part 4, the SymbolicId, NamespaceUri, LocalizedText and Locale fields are indexes in a string table which is returned in the response header. Only the index of the string in this table is encoded. An index of -1 indicates that there is no value for the string.
 Table 10 – DiagnosticInfo Binary Encoding
	Name
	Data Type
	Description

	Encoding Mask
	Byte
	A bit mask that indicates which fields are present in the stream.

The mask has the following bits:

0x01

Symbolic Id

0x02

Namespace

0x04

LocalizedText

0x08

Locale

0x10

Additional Info

0x20

InnerStatusCode
0x40

InnerDiagnosticInfo

	SymbolicId
	Int32
	A symbolic name for the status code.

	NamespaceUri
	Int32
	A namespace that qualifies the symbolic id.

	LocalizedText
	Int32
	A human readable summary of the status code.

	Locale
	Int32
	The locale used for the localized text.

	Additional Info
	String
	Detailed application specific diagnostic information.

	Inner StatusCode
	StatusCode
	A status code provided by an underlying system.

	Inner DiagnosticInfo
	DiagnosticInfo
	Diagnostic info associated with the inner status code.

5.2.2.13 QualifiedName

A QualifiedName structure is encoded as shown in Table 11.

The abstract QualifiedName structure is defined in Part 3 Clause 8.4.
 Table 11 – QualifiedName Binary Encoding
	Name
	Data Type
	Description

	NamespaceIndex
	UInt16
	The namespace index.

	Name
	String
	The name.

5.2.2.14 LocalizedText

A LocalizedText structure contains two fields that could be missing. For that reason, the encoding uses a bit mask to indicate which fields are actually present in the encoded form.

The abstract LocalizedText structure is defined in Part 3 Clause 8.6.
 Table 12 – LocalizedText Binary Encoding
	Name
	Data Type
	Description

	EncodingMask
	Byte
	A bit mask that indicates which fields are present in the stream.

The mask has the following bits:

0x01

Locale

0x02

Text

	Locale
	String
	The locale.

Omitted is null or empty.

	Text
	String
	The text in the specified locale.

Omitted is null or empty.

5.2.2.15 ExtensionObject

An ExtensionObject is encoded as sequence of bytes prefixed by the NodeId of its DataTypeEncoding and the number of bytes encoded.
An ExtensionObject may be encoded by the application which means it is passed as a ByteString or an XmlElement to the encoder. In this case, the encoder will be able to write the number of bytes in the object before it encodes the bytes. However, an ExtensionObject may know how to encode/decode itself which means the encoder shall calculate the number of bytes before it encodes the object or it shall be able seek backwards in the stream and update the length after encoding the body.

When a decoder encounters an ExtensionObject it shall check if it recognizes the DataTypeEncoding identifier. If it does then it can call the appropriate function to decode the object body. If the decoder does not recognize the type it shall use the EncodingMask to determine if the body is a ByteString or an XmlElement and then decode the object body.
The serialized form of a ExtensionObject is shown in Table 13.

 Table 13 – Extension Object Binary Encoding
	Name
	Data Type
	Description

	TypeId
	NodeId
	The identifier for the DataTypeEncoding node in the server's address space. ExtensionObjects defined by the OPC UA specification have a numeric node identifier assigned to them with a NamespaceIndex of 0. The numeric identifiers are defined in Annex A.1.

	Encoding
	Byte
	An enumeration that indicates how the body is encoded.

The parameter may have the following values:

0x00

No body is encoded,

0x01

The body is encoded as a ByteString.

0x02

The body is encoded as a XmlElement.

	Length
	Int32
	The length of the object body.

The length shall always be specified.

	Body
	Byte[*]
	The object body.

This field contains the raw bytes for ByteString bodies.

For XmlElement bodies this field contains the XML encoded as a UTF-8 string without any null terminator.

ExtensionObjects are used in two contexts: as values contained in Variant structures or as parameters in OPC UA messages.
5.2.2.16 Variant

An Variant is a union of the built-in types.

The structure of an Variant is shown in Table 14.

Table 14 – Variant Binary Encoding
	Name
	Data Type
	Description

	EncodingMask
	Byte
	The type of data encoded in the stream.

The mask has the following bits assigned:

0:5

Built-in Type Id (see Table 1)

6

True if the Array Dimensions field is encoded.

7

True if an array of values is encoded.

	ArrayLength
	Int32
	The number of elements in the array.

This field is only present if the array bit is set in the encoding mask.

Multi-dimensional arrays are encoded as a one dimensional array and this field specifies the total number of elements. The original array can be reconstructed from the dimensions that are encoded after the value field.

Higher rank dimensions are serialized first. e.g. an array with dimensions [2,2,2] is written in this order:

[0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,0], [1,0,1], [1,1,0], [1,1,1]

	Value
	*
	The value encoded according to its data type.

If the array bit is set in the encoding mask then each element in the array is encoded sequentially. Since many types have variable length encoding each element shall be decoded in order.

The value shall not be an Variant but it could be an array of Variants.

Many implementation platforms do not distinguish between one dimensional Arrays of Bytes and ByteStrings. For this reason, decoders are allowed to automatically convert an Array of Bytes to a ByteString.

	ArrayDimensions
	Int32[]
	The length of each dimension.

This field is only present if the array dimensions flag is set in the encoding mask. The lower rank dimensions appear first in the array.

The possible types and their identifiers that can be encoded in an Variant are shown in Table 1.
5.2.2.17 DataValue

A DataValue is always preceded by a mask that indicates which fields are present in the stream.

The fields of a DataValue are described in Table 15.
Table 15 – Data Value Binary Encoding
	Name
	Data Type
	Description

	Encoding Mask
	Byte
	A bit mask that indicates which fields are present in the stream.

The mask has the following bits:

0x01

False if the Value is Null
0x02

False if the StatusCode is Good

0x04

False if the Source Timestamp is DateTime.MinValue.

0x08

False if the Server Timestamp is DateTime.MinValue.

0x10

False if the Source Picoseconds is 0.
0x20

False if the Server Picoseconds is 0.

	Value
	Variant
	The value.

Not present if the Value bit in the EncodingMask is False.

	Status
	StatusCode
	The status associated with the value.

Not present if the StatusCode bit in the EncodingMask is False.

	SourceTimestamp
	DateTime
	The source timestamp associated with the value.

Not present if the SourceTimestamp bit in the EncodingMask is False.

	SourcePicoseconds
	UInt16
	The number of 10 picoseconds intervals for the SourceTimestamp.

Not present if the SourcePicoseconds bit in the EncodingMask is False.

	ServerTimestamp
	DateTime
	The server timestamp associated with the value.

Not present if the ServerTimestamp bit in the EncodingMask is False.

	ServerPicoseconds
	UInt16
	The number of 10 picoseconds intervals for the ServerTimestamp.

Not present if the ServerPicoseconds bit in the EncodingMask is False.

The Picoseconds fields store the difference between a high resolution timestamp with a resolution of 10ps and the Timestamp field value which only has a 100ns resolution. The Picoseconds fields shall contain values less than 10000. The decoder shall treat values greater than or equal to 10000 as the value ‘9999’.

5.2.3 Enumerations

Enumerations are encoded as Int32 values.
5.2.4 Arrays

Arrays that occur outside of a Variant are encoded as a sequence of elements preceded by the number of elements encoded as an Int32 value. If an array is Null then its length is encoded as -1. An array of zero length is different from an array that is Null so encoders and decoders shall preserve this distinction.

Multi-dimensional arrays can only be encoded within a Variant.
5.2.5 Structures

Structures are encoded as a sequence of fields in the order that they appear in the definition. The encoding for each field is determined by the data type for the field.

All fields specified in the complex type shall be encoded.

Structures do not have a Null value. If an encoder is written in a programming language that allows structures to have null values then the encoder shall create a new instance with default values for all fields and serialize that. Encoders shall not generate an encoding error in this situation.

The following is an example of a structure using C++ syntax:

class Type2

{

int A;

int B;

};

class Type1

{

int X;

int NoOfY;

Type2* Y;

int Z;

};

The Y field is a pointer to an array with a length stored in NoOfY.

An instance of Type1 which contains an array of two Type2 instances would be encoded as 37 byte sequence. If the instance of Type1 was encoded in an ExtensionObject it would have the encoded form shown in Table 16. The TypeId, Encoding and the Length are fields defined by the ExtensionObject. The encoding of the Type2 instances do not include any type identifier because it is explicitly defined in Type1.

Table 16 – Sample OPC UA Binary Encoded Structure

	Field
	Bytes
	Value

	Type Id
	4
	The identifier for Type1

	Encoding
	1
	0x1 for ByteString

	Length
	4
	28

	X
	4
	The value of field ‘X’

	NoOfY
	4
	2

	Y.A
	4
	The value of field ‘Y[0].A’

	Y.B
	4
	The value of field ‘Y[0].B’

	Y.A
	4
	The value of field ‘Y[1].A’

	Y.B
	4
	The value of field ‘Y[1].B’

	Z
	4
	The value of field ‘Z’

5.2.6 Messages

Messages are encoded as ExtensionObjects. The parameters in each message are serialized in the same way the fields of a structure are serialized. The Type Id field contains the DataTypeEncoding identifier for the message. The Length field is omitted since the messages are defined by the OPC UA specification.

Each UA service described in Part 4 has a request and response message. The DataTypeEncoding ids assigned to each service are in Annex A.1.

5.3 XML

5.3.1 Built-in Types
5.3.1.1 General

Most built-in types are encoded in XML using the formats defined in XML Schema Part 2 specification. Any special restrictions or usages are discussed below. Some of the built-in types have an XML Schema defined for them using the syntax defined in XML Schema Part 1.

The prefix xs: is used to denote a symbol defined by the XML Schema specification.

5.3.1.2 Boolean

A Boolean value is encoded as an xs:boolean value.

5.3.1.3 Integer

Integer values are encoded using one of the sub types of the xs:decimal type. The mappings between the OPC UA integer types and XML schema data types are shown in Table 17.
Table 17 – XML Data Type Mappings for Integers

	Name
	XML Type

	SByte
	xs:byte

	Byte
	xs:unsignedByte

	Int16
	xs:short

	UInt16
	xs:unsignedShort

	Int32
	xs:int

	UInt32
	xs:unsignedInt

	Int64
	xs:long

	UInt64
	xs:unsignedLong

5.3.1.4 Floating Point
Floating point values are encoded using one of the XML floating point types. The mappings between the OPC UA floating point types and XML schema data types are shown in Table 18.
Table 18 – XML Data Type Mappings for Floating Points

	Name
	XML Type

	Float
	xs:float

	Double
	xs:double

5.3.1.5 String

A String value is encoded as an xs:string value.

5.3.1.6 DateTime
A DateTime value is encoded as an xs:dateTime value.

All DateTime values shall be encoded as UTC times or with the time zone explicitly specified.

Correct:

2002-10-10T00:00:00+05:00

2002-10-09T19:00:00Z

Incorrect:
2002-10-09T19:00:00

It is recommended that all xs:dateTime values be represented in UTC format.

The earliest and latest date/time values that can be represented on a platform have special meaning and shall not be literally encoded in XML.

The earliest date/time value on a platform shall be encoded in XML as '0001-01-01T00:00:00Z'.

The latest date/time value on a platform shall be encoded in XML as '9999-12-31T11:59:59Z'

If a decoder encounters a xs:dateTime value that cannot be represented on the platform it should convert the value to either the earliest or latest date/time that can be represented on the platform. The XML decoder should not generate an error if it encounters an out of range date value.

The earliest date/time value on a platform is equivalent to a Null date/time value.
5.3.1.7 Guid

A Guid is encoded using the string representation defined in Section 5.1.3.
The XML schema for a Guid is:

<xs:complexType name="Guid">

 <xs:sequence>

 <xs:element name="String" type="xs:string" minOccurs="0" />

 </xs:sequence>

</xs:complexType>
5.3.1.8 ByteString
A ByteString value is encoded as an xs:base64Binary value.

The XML schema for a ByteString is:

<xs:element name="ByteString" type="xs:base64Binary" nillable="true" />

5.3.1.9 XmlElement

An XmlElement value is encoded as a xs:complexType with the following XML schema:

<xs:complexType name="XmlElement">
 <xs:sequence>

 <xs:any minOccurs="0" maxOccurs="1" processContents="lax" />

 </xs:sequence>

</xs:complexType>

XmlElements may only be used inside Variant or ExtensionObject values.

5.3.1.10 NodeId

A NodeId value is encoded as a xs:string with the syntax:

ns=<namespaceindex>;<type>=<value>

The elements of the syntax are described in Table 19.

Table 19 – Components of NodeId

	Field
	Data Type
	Description

	<namespaceindex>
	UInt16
	The namespace index formatted as a base 10 number.

If the index is 0 then the entire 'ns=0;' clause shall be omitted.

	<type>
	Enum
	A flag that specifies the identifier type.

The flag has the following values:

i

NUMERIC (UInteger)

s

STRING (String)

g

GUID (Guid)

b

OPAQUE (ByteString)

	<value>
	*
	The identifier encoded as string.

The identifier is formatted using the XML data type mapping for the identifier type.

Note that the identifier may contain any non-null UTF8 character including whitespace.

Examples of NodeIds:
i=13
ns=10;i=-1
ns=10;s=Hello:World
g=09087e75-8e5e-499b-954f-f2a9603db28a

n=1;b=M/RbKBsRVkePCePcx24oRA==

The XML schema for a NodeId is:

<xs:complexType name="NodeId">

 <xs:sequence>

 <xs:element name="Identifier" type="xs:string" minOccurs="0" />

 </xs:sequence>

</xs:complexType>

5.3.1.11 ExpandedNodeId

An ExpandedNodeId value is encoded as a xs:string with the syntax:

svr=<serverindex>;ns=<namespaceindex>;<type>=<value>
or

svr=<serverindex>;nsu=<uri>;<type>=<value>

Table 20 – Components of ExpandedNodeId

	Field
	Data Type
	Description

	<serverindex>
	UInt32
	The server index formatted as a base 10 number.

If the server index is 0 then the entire 'svr=0;' clause shall be omitted.

	<namespaceindex>
	UInt16
	The namespace index formatted as a base 10 number.

If the namespace index is 0 then the entire 'ns=0;' clause shall be omitted.
The namespace index shall not be present if the URI is present.

	<uri>
	String
	The namespace URI formatted as a string.

Any reserved characters in the URI shall be replaced with a ‘%’ followed by its 8 bit ANSI value encoded as two hexadecimal digits (case insensitive). For example, the character ‘;’ would be replaced by ‘%3B’.

The reserved characters are ‘;’ and ‘%’.

If the namespace URI is null or empty then 'nsu=;' clause shall be omitted.

	<type>
	Enum
	A flag that specifies the identifier type.

This field is described in Table 19.

	<value>
	*
	The identifier encoded as string.

This field is described in Table 19.

The XML schema for a ExpandedNodeId is:

<xs:complexType name="ExpandedNodeId">

 <xs:sequence>

 <xs:element name="Identifier" type="xs:string" minOccurs="0" />

 </xs:sequence>

</xs:complexType>

5.3.1.12 StatusCode
A StatusCode is formatted in an xs:string as an 8 digit hexadecimal number.

The XML schema for a StatusCode is:

<xs:complexType name="StatusCode">

 <xs:sequence>

 <xs:element name="Code" type="xs:unsignedInt" minOccurs="0" />

 </xs:sequence>

</xs:complexType>

5.3.1.13 DiagnosticInfo

An DiagnosticInfo value is encoded as a xs:complexType with the following XML schema:

<xs:complexType name="DiagnosticInfo">

 <xs:sequence>

 <xs:element name="SymbolicId" type="xs:int" minOccurs="0" />

 <xs:element name="NamespaceUri" type="xs:int" minOccurs="0" />

 <xs:element name="LocalizedText" type="xs:int" minOccurs="0/>

 <xs:element name="Locale" type="xs:int" minOccurs="0/>

 <xs:element name="AdditionalInfo" type="xs:string" minOccurs="0" />

 <xs:element name="InnerStatusCode" type="tns:StatusCode" minOccurs="0" />

 <xs:element name="InnerDiagnosticInfo" type="tns:DiagnosticInfo"

 minOccurs="0" />

 </xs:sequence>

</xs:complexType>

5.3.1.14 QualifiedName

A QualifiedName value is encoded as a xs:complexType with the following XML schema:

<xs:complexType name="QualifiedName">

 <xs:sequence>

 <xs:element name="NamespaceIndex" type="xs:int" minOccurs="0" />

 <xs:element name="Name" type="xs:string" minOccurs="0" />

 </xs:sequence>

</xs:complexType>

5.3.1.15 LocalizedText

A LocalizedText value is encoded as a xs:complexType with the following XML schema:

<xs:complexType name="LocalizedText">

 <xs:sequence>

 <xs:element name="Locale" type="xs:string" minOccurs="0" />

 <xs:element name="Text" type="xs:string" minOccurs="0" />

 </xs:sequence>

</xs:complexType>

5.3.1.16 ExtensionObject

An ExtensionObject value is encoded as a xs:complexType with the following XML schema:

<xs:complexType name="ExtensionObject">

 <xs:sequence>

 <xs:element name="TypeId" type="tns:NodeId" minOccurs="0" />

 <xs:element name="Body" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:any minOccurs="0" processContents="lax"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

The body of the ExtensionObject contains a single element which is either a ByteString or XML encoded Structure. A decoder can distinguish between the two by inspecting the top level element. An element with the name tns:ByteString contains a OPC UA Binary encoded body. Any other name shall contain an OPC UA XML encoded body.

The TypeId is the NodeId for the DataTypeEncoding Object.
5.3.1.17 Variant

A Variant value is encoded as a xs:complexType with the following XML schema:

<xs:complexType name="Variant">

 <xs:sequence>

 <xs:element name="Value" minOccurs="0" nillable="true">

 <xs:complexType>

 <xs:sequence>

 <xs:any minOccurs="0" processContents="lax"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

If the Variant represents a scalar value then it shall contain a single child element with the name of the built-in type. For example, the single precision floating point value 3.1415 would be encoded as:

<tns:Float>3.1415</tns:Float>
If the Variant represents a single dimensional array then it shall contain a single child element with the prefix 'ListOf' and the name built-in type. For example an array of strings would be encoded as:

<tns:ListOfString>

 <tns:String>Hello</tns:String>

 <tns:String>World</tns:String>

</tns:ListOfString>

If the Variant represents a Multidimensional array then it shall contain a child element with the name ‘Matrix’ with the two sub-elements shown in this example:

<tns:Matrix>

 <tns:Dimensions>

 <tns:Int32>2</tns:Int32>

 <tns:Int32>2</tns:Int32>

 </tns:Dimensions>

 <tns:Elements>

 <tns:String>A</tns:String>

 <tns:String>B</tns:String>

 <tns:String>C</tns:String>

 <tns:String>D</tns:String>

 </tns:Elements>

</tns:Matrix>
In this example, the array has the following elements:

[0,0] = "A"; [0,1] = "B"; [1,0] = "C"; [1,1] = "D"

The elements of a multi-dimensional array are always flattened into a single dimensional array where the higher rank dimensions are serialized first. This single dimensional array is encoded as a child of the ‘Elements’ element. The ‘Dimensions’ element is an array of Int32 values that specify the dimensions of the array starting with the lowest rank dimension. The multi-dimensional array can be reconstructed by using the dimensions encoded.

The complete set of built-in type names is found in Table 1.
5.3.1.18 DataValue

A DataValue value is encoded as a xs:complexType with the following XML schema:

<xs:complexType name="DataValue">

 <xs:sequence>

 <xs:element name="Value" type="tns:Variant" minOccurs="0" nillable="true" />

 <xs:element name="StatusCode" type="tns:StatusCode" minOccurs="0" />

 <xs:element name="SourceTimestamp" type="xs:dateTime" minOccurs="0" />

 <xs:element name="SourcePicoseconds" type="xs:unsignedShort" minOccurs="0"/>

 <xs:element name="ServerTimestamp" type="xs:dateTime" minOccurs="0" />

 <xs:element name="ServerPicoseconds" type="xs:unsignedShort" minOccurs="0"/>

 </xs:sequence>

</xs:complexType>
5.3.2 Enumerations

Enumerations that are used as parameters in the Messages defined in Part 4 are encoded as xs:string with the following syntax:

<symbol>_<value>

The elements of the syntax are described in Table 21.

Table 21 – Components of Enumeration

	Field
	Type
	Description

	<symbol>
	String
	The symbolic name for the enumerated value.

	<value>
	UInt32
	The numeric value associated with enumerated value.

For example, the XML schema for the NodeClass enumeration is:

<xs:simpleType name="NodeClass">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Unspecified_0" />

 <xs:enumeration value="Object_1" />

 <xs:enumeration value="Variable_2" />

 <xs:enumeration value="Method_4" />

 <xs:enumeration value="ObjectType_8" />

 <xs:enumeration value="VariableType_16" />

 <xs:enumeration value="ReferenceType_32" />

 <xs:enumeration value="DataType_64" />

 <xs:enumeration value="View_128" />

 </xs:restriction>

</xs:simpleType>

Enumerations that are stored in a Variant are encoded as an Int32 value.

For example, any Variable could have a value with a DataType of NodeClass. In this case the corresponding numeric value is placed in the Variant (e.g. NodeClass::Object would be stored as a 1).
5.3.3 Arrays

Arrays parameters are always encoded by wrapping the elements in a container element and inserting the container into the structure. The name of the container element should be the name of the parameter. The name of the element in the array shall be the type name.

For example, the Read service takes an array of ReadValueIds. The XML schema would look like:

<xs:complexType name="ListOfReadValueId">

 <xs:sequence>

 <xs:element name="ReadValueId" type="tns:ReadValueId"

 minOccurs="0" maxOccurs="unbounded" nillable="true" />

 </xs:sequence>

</xs:complexType>

The nillable attribute shall be specified because XML encoders will drop elements in arrays if those elements are empty.
5.3.4 Structures
Structures are encoded as a xs:complexType with all of the fields appearing in a sequence. All fields are encoded as an xs:element and have xs:maxOccurs set to 1.

For example, the Read service has a ReadValueId structure in the request. The XML schema would look like:

<xs:complexType name="ReadValueId">

 <xs:sequence>

 <xs:element name="NodeId" type="tns:NodeId" minOccurs="1" />

 <xs:element name="AttributeId" type="xs:int" minOccurs="1" />

 <xs:element name="IndexRange" type="xs:string"

 minOccurs="0" nillable="true" />

 <xs:element name="DataEncoding" type="tns:NodeId" minOccurs="1" />

 </xs:sequence>

</xs:complexType>

5.3.5 Messages

Messages are encoded as an xs:complexType. The parameters in each message are serialized in the same way the fields of a structure are serialized.

6 Security Protocols

6.1 Security Handshake

All SecurityProtocols shall implement the OpenSecureChannel and CloseSecureChannel services defined in Part 4. These services specify how to establish a SecureChannel and how to apply security to messages exchanged over that SecureChannel. The messages exchanged and the security algorithms applied to them are shown in Figure 10.
SecurityProtocols shall support three SecurityModes: None, Sign and SignAndEncrypt. If the SecurityMode is None then no security is used and the security handshake shown in Figure 10 is not required. However, a SecurityProtocol implementation shall still maintain a logical channel and provide a unique identifier for the SecureChannel.

[image: image10.emf]Client

Server

OpenSecureChannel Request

Signed with Client Private Key

Encrypted with Server Public Key

AsymmetricSignatureAlgorithm

AsymmetricEncryptionAlgorithm

or

AsymmetricKeyWrapAlgorithm

SymmetricEncryptionAlgorithm

OpenSecureChannel Response

Signed with Server Private Key

Encrypted with Client Public Key

CreateSession Request

Signed with Client Signing Key

Encrypted with Server Encryption Key

SymmetricEncryptionAlgorithm

KeyDerivationAlgorithm

SymmetricSignatureAlgorithm

KeyDerivationAlgorithm

DerivedSignatureKeyLength

CreateSession Response

Signed with Server Signing Key

Encrypted with Client Encryption Key

Figure 10 – The Security Handshake

Each SecurityProtocol mapping specifies exactly how to apply the security algorithms to the message. A set of security algorithms that shall be used together during a security handshake is called a SecurityPolicy. Part 7 defines standard SecurityPolicies as parts of the standard Profiles which OPC UA applications are expected to support. Part 7 also defines a URI for each standard SecurityPolicy.

A Stack is expected to have built in knowledge of the SecurityPolicies that it supports. Applications specify the SecurityPolicy they wish to use by passing the URI to the Stack.

Table 22 defines the contents of a SecurityPolicy. Each SecurityProtocol mapping specifies how to use each of the parameters in the SecurityPolicy. A SecurityProtocol mapping may not make use of all of the parameters.
Table 22 – SecurityPolicy

	Name
	Description

	PolicyUri
	The URI assigned to the SecurityPolicy.

	SymmetricSignatureAlgorithm
	The URI of the symmetric signature algorithm to use.

	SymmetricEncryptionAlgorithm
	The URI of the symmetric key encryption algorithm to use.

	AsymmetricSignatureAlgorithm
	The URI of the asymmetric signature algorithm to use.

	AsymmetricKeyWrapAlgorithm
	The URI of the asymmetric key wrap algorithm to use.

	AsymmetricEncryptionAlgorithm
	The URI of the asymmetric key encryption algorithm to use.

	KeyDerivationAlgorithm
	The key derivation algorithm to use.

	DerivedSignatureKeyLength
	The length in bits of the derived key used for message authentication.

The AsymmetricEncryptionAlgorithm is used when encrypting the entire message with an asymmetric key. Some SecurityProtocols do not encrypt the entire message with an asymmetric key. Instead, they use the AsymmetricKeyWrapAlgorithm to encrypt a symmetric key and then use the SymmetricEncryptionAlgorithm to encrypt the message.

The AsymmetricSignatureAlgorithm is used to sign a message with an asymmetric key.
The KeyDerivationAlgorithm is used to create the keys used to secure messages sent over the SecureChannel. The length of the keys used for encryption are implied by the SymmetricEncryptionAlgorithm. The length of the keys used for creating symmetric signatures depend on the SymmetricSignatureAlgorithm and may be different from the encryption key length.
6.2 Certificates

6.2.1 General

OPC UA Applications use Certificates to store the public keys needed for asymmetric cryptography operations. All SecurityProtocols use X509 Version 3 Certificates (see X509) encoded using the DER format (see X690). Certificates used by OPC UA Applications shall also conform to RFC 3280 which defines a profile for X509 Certificates when they are used as part of an Internet based application.

The ServerCertificate and ClientCertificate parameters used in the abstract OpenSecureChannel service are instances of the ApplicationInstanceCertificate data type. Clause 6.2.2 describes how to create an X509 certificate that can be used as an ApplicationInstanceCertificate.

The ServerSoftwareCertificates and ClientSoftwareCertificates parameters in the abstract CreateSession and ActivateSession services are instances of the SignedSoftwareCertificate data type. Clause 6.2.3 describes how to create an X509 Certificate that can be used as an SignedSoftwareCertificate.
6.2.2 Application Instance Certificate

An ApplicationInstanceCertificate is a ByteString containing the DER encoded form of an X509v3 Certificate. This Certificate is issued by certifying authority and identifies an instance of an application running on a single host. The X509v3 fields contained in an ApplicationInstance Certificate are described in Table 23. The fields are defined completely in RFC 3280.

Table 23 – ApplicationInstanceCertificate
	Name
	Abstract Parameter
	Description

	ApplicationInstanceCertificate
	
	An X509v3 Certificate.

	
version
	
version
	shall be “V3”

	
serialNumber
	
serialNumber
	The serial number assigned by the issuer.

	
signatureAlgorithm
	
signatureAlgorithm
	The algorithm used to sign the Certificate.

	
signature
	
signature
	The signature created by the Issuer.

	
issuer
	
issuer
	The distinguished name of the Certificate used to create the signature.

The issuer field is completely described in RFC 3280.

	
validity
	
validTo, validFrom
	When the Certificate becomes valid and when it expires.

	
subject
	
subject
	The distinguished name of the application instance.

The Common Name attribute shall be specified and should be the productName or a suitable equivalent. The Organization Name attribute shall be the name of the Organization that executes the application instance. This organization is usually not the vendor of the application.

Other attributes may be specified.

The subject field is completely described in RFC 3280.

	
subjectAltName
	
applicationUri,

hostnames
	The alternate names for the application instance.

Shall include a uniformResourceIdentifier which is equal to the applicationUri.

Servers shall specify a dNSName or IPAddress which identifies the machine where the application instance runs. Additional dNSNames may be specified if the machine has multiple names. The IPAddress should not be specified if the Server has dNSName.
The subjectAltName field is completely described in RFC 3280.

	
publicKey
	
publicKey
	The public key associated with the Certificate.

	
keyUsage
	
keyUsage
	Specifies how the certificate key may be used.

Shall include digitalSignature, nonRepudiation, keyEncipherment and dataEncipherment.

Other key uses are allowed.

	
extendedKeyUsage
	
keyUsage
	Specifies additional key uses for the Certificate.

Shall specify 'serverAuth and/or clientAuth.
Other key uses are allowed.

6.2.3 Signed Software Certificate

A SignedSoftwareCertificate is a ByteString containing the DER encoded form of an X509v3 Certificate. This Certificate is issued by a certifying authority and contains an X509v3 extension with the SoftwareCertificate which specifies the claims verified by the certifying authority. The X509v3 fields contained in a SignedSoftwareCertificate are described in Table 24. The fields are defined completely in RFC 3280.

Table 24 – SignedSoftwareCertificate

	Name
	
	Description

	SignedSoftwareCertificate
	
	An X509v3 Certificate.

	
version
	
version
	Shall be “V3”

	
serialNumber
	
serialNumber
	The serial number assigned by the issuer.

	
signatureAlgorithm
	
signatureAlgorithm
	The algorithm used to sign the Certificate.

	
signature
	
signature
	The signature created by the Issuer.

	
issuer
	
issuer
	The distinguished name of the Certificate used to create the signature.

The issuer field is completely described in RFC 3280.

	
validity
	
validTo, validFrom
	When the Certificate becomes valid and when it expires.

	
subject
	
subject
	The distinguished name of the product.

The Common Name attribute shall be the same as the productName in the SoftwareCertificate and the Organization Name attribute shall the vendorName in the SoftwareCertificate.

Other attributes may be specified.

The subject field is completely described in RFC 3280.

	
subjectAltName
	
productUri
	The alternate names for the product.

shall include a ‘uniformResourceIdentifier’ which is equal to the productUri specified in the SoftwareCertificate.
The subjectAltName field is completely described in RFC 3280.

	
publicKey
	
publicKey
	The public key associated with the Certificate.

	
keyUsage
	
keyUsage
	Specifies how the certificate key may be used.

shall be ‘digitalSignature’ and ‘nonRepudiation’

Other key uses are not allowed.

	
extendedKeyUsage
	
keyUsage
	Specifies additional key uses for the Certificate.

May specify ‘codeSigning’.
Other key usages are not allowed.

	
softwareCertificate
	
softwareCertificate
	The XML encoded form of the SoftwareCertificate stored as UTF8 text.
Clause 5.3.4 describes how to encode a SoftwareCertificate in XML.

The ASN.1 Object Identifier (OID) for this extension is: 1.2.840.113556.1.8000.2264.1.6.1

6.3 WS Secure Conversation

6.3.1 Overview

Any message sent via SOAP may be secured with the WS Secure Conversation protocol. This protocol specifies a way to negotiate shared secrets via WS Trust and then use these secrets to secure messages exchanged with the mechanisms defined in WS Security.

The mechanisms for actually signing XML elements are described in the XML Signature specification. The mechanisms for encrypting XML elements are described the XML Encryption specification.

WS Security Policy defines standard algorithm suites which can be used to secure SOAP messages. These algorithm suites map directly onto the SecurityPolicies that are defined in Part 7. WS-I Basic Security Profile 1.1 defines best practices when using WS-Security which will help ensure interoperability. All OPC UA implementations shall conform to this specification.
The Timestamp header defined by WS Security is used to prevent replay attacks and shall be present and signed in all messages exchanged
.
Figure 11
 illustrates the relationship between the different WS-* specifications that are used by this mapping. The versions of the WS-* specifications shown in the diagram were the most current versions at the time of publication. Part 7 may define Profiles that require support for future versions of these specifications.

[image: image11.emf]WS Security 1.1

SOAP 1.2

HTTP or HTTPS (SSL/TLS)

WS Trust 1.3

WS Addressing 1.0

WS Secure Conversation 1.3

XML Signature 1.0 XML Encryption 1.0

WS Security Policy 1.2

Figure 11 – The XML Web Services Stack

Figure 12 illustrates how these WS-* specifications are used in the security handshake.

[image: image12.emf]Client

Server

RST/SCT (WS-Trust)

BinarySecurityToken(contains Client Public Key)

SecurityToken (encrypted with Server Private Key)

RSTR/SCT (WS-Trust)

CreateSession Request

CreateSession Response

Each DerivedKeyToken

contains a Nonce that is

used to derived the key

from the shared secret

DerivedKeyToken(signing)

DerivedKeyToken(encrypting)

SecurityContextToken (identifier only)

DerivedKeyToken (signing)

DerivedKeyToken (encrypting)

SecurityContextToken (identifier only)

DerivedKeyToken (signing)

DerivedKeyToken (encrypting)

Contains a secret that is

used to create the derived

keys.

The SecurityContextToken

contains a secret created

from the entropy provided in

the RST and RSTR.

OpenSecureChannel Response

OpenSecureChannel Request

Figure 12 – The WS Secure Conversation Handshake

The RST (Request Security Token) and RSTR (Request Security Token Response) messages are defined by WS Trust. WS Secure Conversation defines new actions for these messages that tell the server that the client wants to create a SCT (Security Context Token). The SCT contains the shared keys that the applications use to secure messages sent over the SecureChannel.

Individual messages are secured with keys derived from the SCT using the mechanism defined in WS Secure Conversation. The sections below specify the structure of the individual messages and illustrate which features from the WS-* specifications are required to implement the OPC UA security handshake.
6.3.2 Notation

SOAP messages use XML elements defined in a number of different specifications. This document uses the prefixes in Table 25 to identify the specification that defines an XML element.

Table 25 – WS-* Namespace Prefixes
	Prefix
	Specification

	wsu
	WS-Security Utilities

	wsse
	WS-Security Extensions

	wst
	WS-Trust

	wsc
	WS-Secure Conversation

	wsa
	WS-Addressing

	xenc
	XML Encryption

6.3.3 Request Security Token (RST/SCT)

The Request Security Token message implements the abstract OpenSecureChannel request message defined in Part 4. The syntax of this message is defined by WS Trust. The structure of the message is described in detail in WS Secure Conversation.

This message shall have the following tokens:

1) A wsse:BinarySecurityToken containing the Client’s Public Key. The public key is sent in a DER encoded X509v3 certificate.

2) An encrypted wsse:SecurityToken containing ClientNonce used to derive keys. This token shall be encrypted with the AsymmetricKeyWrapAlgorithm and the public key associated with the Server’s Application Instance Certificate.

3) A wsc:DerivedKeyToken which is used to sign the body, the WS Addressing headers and the wsu:Timestamp header using the SymmetricSignatureAlgorithm. The signature element shall then be signed using the AsymmetricSignatureAlgorithm with the Client’s Private Key. The wsc:DerivedKeyToken shall also specify a Nonce.

4) A wsc:DerivedKeyToken which is used to encrypt the body of the message using the SymmetricEncryptionAlgorithm.

This message shall have the wsa:Action, wsa:MessageId, wsa:ReplyTo and wsa:To headers defined by WS Addressing. The message shall also have a wsu:Timestamp header defined by WS Security. These headers shall also be signed with the derived key used to sign the message body.

The signature shall be calculated before applying encryption and the signature shall be encrypted.
The mapping between the OpenSecureChannel request parameters and the elements of the RST/SCT message are shown in Table 26.

Table 26 – RST/SCT Mapping to an OpenSecureChannel Request
	OpenSecureChannel Parameter
	RST/SCT Element
	Description

	clientCertificate
	wsse:BinarySecurityToken
	Passed in the SOAP header.

	requestType
	wst:RequestType
	Shall be “http://schemas.xmlsoap.org/ws/2005/02/trust/Issue” when creating a new SCT.

Shall be “http://schemas.xmlsoap.org/ws/2005/02/trust/Renew” when renewing a SCT.

	secureChannelId
	wsse:SecurityTokenReference
	Passed in the SOAP header when renewing an SCT.

	securityMode

securityPolicyUri
	wst:SignatureAlgorithm

wst:EncryptionAlgorithm

wst:KeySize
	These elements describe the SecurityPolicy requested by the client.

These elements shall match the SecurityPolicy used by the endpoint that the client wishes to connect to.

These elements are optional.

	clientNonce
	wst:Entropy
	This contains the nonce specified by the client.

The nonce is specified with the wst:BinarySecret element.

	requestedLifetime
	wst:Lifetime
	The requested lifetime for the SCT.

This element is optional.

6.3.4 Request Security Token Response (RSTR/SCT)

The Request Security Token Response message implements the abstract OpenSecureChannel response message defined in Part 4. The syntax of this message is defined by WS Trust. The use of the message is described in detail in WS Secure Conversation. This message not signed or encrypted with the asymmetric algorithms as described in the Part 4. The symmetric algorithms and a key provided in the request message are used instead.

This message shall have the following tokens:

1) A wsc:DerivedKeyToken which is used to sign the body, the WS Addressing headers and the wsu:Timestamp header using the SymmetricSignatureAlgorithm. This key is derived from the encrypted SecurityToken specified in the RST/SCT message. The wsc:DerivedKeyToken shall also specify a Nonce.

2) A wsc:DerivedKeyToken which is used to encrypt the body of the message using the SymmetricEncryptionAlgorithm. This key is derived from the encrypted SecurityToken specified in the RST/SCT message. The wsc:DerivedKeyToken shall also specify a Nonce.

This message shall have the wsa:Action and wsa:RelatesTo headers defined by WS Addressing. The message shall also have a wsu:Timestamp header defined by WS Security. These headers shall also be signed with the derived key used to sign the message body.

The signature shall be calculated before applying encryption and the signature shall be encrypted.
The mapping between the OpenSecureChannel response parameters and the elements of the RSTR/SCT message are shown Table 27.

Table 27 – RSTR/SCT Mapping to an OpenSecureChannel Response
	OpenSecureChannel Parameter
	RSTR/SCT Element
	Description

	wst:RequestedProofToken
	This contains a wst:ComputedKey element which specifies the algorithm used to compute the shared secret key from the nonces provided by the client and the server.

	wst:TokenType
	Specifies the type of token issued.

	securityToken
	wst:RequestedSecurityToken
	Specifies the new SCT (Security Context Token) or renewed SCT.

	
channelId
	wsc:Identifier
	An absolute URI which identifies the SCT.

	
tokenId
	wsc:Instance
	An identifier for a set of keys issued for a context.

It shall be unique within the context.

	
createdAt
	wsu:Created
	This is optional element in the wsc:SecurityContextToken returned in the header.

	revisedLifetime
	wst:Lifetime
	The revised lifetime for the SCT.

	serverNonce
	wst:Entropy
	This contains the nonce specified by the server.

The nonce is specified with the wst:BinarySecret element.

The xenc:EncryptedData element is not used in OPC UA because the message body shall be encrypted.

The lifetime specifies the UTC expiration time for the security context token. The client shall renew the SCT before that time by sending the RST/SCT message again. The exact behaviour is described in Part 4 (Clause 5.4).

6.3.5 Using the SCT

Once the Client receives the RSTR/SCT message it can use the SCT to secure all other messages.

An identifier for the SCT used shall be passed as an wsc:SecurityContextToken in each request message. The response message shall reference the SecurityContextToken used in the request.
If encryption is used it shall be applied before the signature is calculated.

Any message secured with the SecurityContextToken shall have the following additional tokens:

1) A wsc:DerivedKeyToken which is used to sign the body, the WS Addressing headers and the wsu:Timestamp header using the SymmetricSignatureAlgorithm. This key is derived from the SecurityContextToken. The wsc:DerivedKeyToken shall also specify a Nonce.

2) A wsc:DerivedKeyToken which is used to encrypt the body of the message using the SymmetricEncryptionAlgorithm. This key is derived from the SecurityContextToken. The wsc:DerivedKeyToken shall also specify a Nonce.

This message shall have the wsa:Action and wsa:RelatesTo headers defined by WS Addressing. The message shall also have a wsu:Timestamp header defined by WS Security.

6.3.6 Cancelling Security Contexts

The Cancel message defined by WS Trust implements the abstract CloseSecureChannel request message defined in Part 4.

This message shall be secured with the SCT.
6.4 OPC UA Secure Conversation

6.4.1 Overview

OPC UA Secure Conversation (UASC) is a binary version of WS-Secure Conversation. It allows secure communication over transports that do not use SOAP or XML.

UASC is designed to operate with different TransportProtocols that may have limited buffer sizes. For this reason, OPC UA Secure Conversation will break OPC UA messages into several pieces (called ‘MessageChunks’) that are smaller than the buffer size allowed by the TransportProtocol. UASC requires a TransportProtocol buffer size that is at least 8192
bytes.

All security is applied to individual MessageChunks and not the entire OPC UA message. A Stack that implements UASC is responsible for verifying the security on each MessageChunk received and reconstructing the original OPC UA message.

All MessageChunks will have a 4-byte sequence assigned to them. These sequence numbers are used to detect and prevent replay attacks.

UASC requires a TransportProtocol that will preserve the order of MessageChunks, however, a UASC implementation does not necessarily process the Messages in the order that they were received.

6.4.2 MessageChunk Structure

Figure 13 shows the structure of a MessageChunk and how security is applied to the message.

[image: image13.emf]Message Header

Security Header

Body

Signature

Data To Sign

Data To Encrypt

Sequence Header

Padding

Figure 13 – OPC UA Secure Conversation MessageChunk
Every MessageChunk has a message header with the fields defined in Table 28.

Table 28 – OPC UA Secure Conversation Message Header
	Name
	Data Type
	Description

	MessageType
	Byte[3]
	A three byte ASCII code that identifies the message type.

The following values are defined at this time:

MSG
A message secured with the keys associated with a channel.

OPN
OpenSecureChannel message.

CLO

CloseSecureChannel message.

	IsFinal
	Byte
	A one byte ASCII code that indicates whether the MessageChunk is the final chunk in a message.

The following values are defined at this time:

C
An intermediate chunk.

F
The final chunk.

A
The final chunk (used when an error occurred and the message is aborted).

	MessageSize
	UInt32
	The length of the MessageChunk, in bytes. This value includes size of the message header.

	SecureChannelId
	UInt32
	A unique identifier for the SecureChannel assigned by the server.

If a Server receives a SecureChannelId which it does not recognize it shall return an appropriate transport layer error.

The message header is followed by a security header which specifies what cryptography operations have been applied to the message. There are two versions of the security header which depend on the type of security applied to the Message. The security header used for asymmetric algorithms is defined in Table 29. Asymmetric algorithms are used to secure the OpenSecureChannel messages. PKCS #1 defines a set asymmetric algorithms that may be used by UASC implementations. The AsymmetricKeyWrapAlgorithm element of the SecurityPolicy structure defined in Table 22 is not used by UASC implementations.

Table 29 – Asymmetric Algorithm Security Header
	Name
	Data Type
	Description

	SecurityPolicyUriLength
	Int32
	The length of the SecurityPolicyUri in bytes.This value shall not exceed 255 bytes.

	SecurityPolicyUri
	Byte[*]
	The URI of the security policy used to secure the message.

This field is encoded as a UTF8 string without a null terminator.

	SenderCertificateLength
	Int32
	The length of the SenderCertificate in bytes.

This value shall not exceed MaxCertificateSize bytes.

	SenderCertificate
	Byte[*]
	The X509v3 certificate assigned to the sending application instance.

This is a DER encoded blob.

The structure of an X509 certificate is defined in X509.

The DER format for a certificate is defined in X690
This indicates what private key was used to sign the MessageChunk.

The Stack shall close the channel and report an error to the application if the SenderCertificate is too large for the buffer size supported by the transport layer.

This field shall be null if the message is not signed.

	ReceiverCertificateThumbprintLength
	Int32
	The length of the ReceiverCertificateThumbprint in bytes.

The length of this field is always 20 bytes.

	ReceiverCertificateThumbprint
	Byte[*]
	The thumbprint of the X509v3 certificate assigned to the receiving application instance.

The thumbprint is the SHA1 digest of the DER encoded form of the certificate.

This indicates what public key was used to encrypt the MessageChunk.

This field shall be null if the message is not encrypted.

The receiver shall close the communication channel if any of the fields in the security header have invalid lengths.

The SenderCertificate shall be small enough to fit into a single MessageChunk and leave room for at least one byte of body information. The maximum size for the SenderCertificate can be calculated with this formula:

MaxCertificateSize =

MessageChunkSize –

12 -

// Header size

4 -

// SecurityPolicyUriLength

SecurityPolicyUri -

// UTF-8 encoded string

4 -

// SenderCertificateLength

4 -

// ReceiverCertificateThumbprintLength

20 -

// ReceiverCertificateThumbprint

8 -

// SequenceHeader size

1 -

// Minimum body size

1 -

// PaddingSize if present

Padding -

// Padding if present

AsymmetricSignatureSize

// If present
The MessageChunkSize depends on the transport protocol but shall be at least 8196 bytes, The AsymmetricSignatureSize depends on the number of bits in the public key for the SenderCertificate. The Int32FieldLength is the length of an encoded Int32 value and it is always 4 bytes.

The security header used for symmetric algorithms defined in Table 30. Symmetric algorithms are used to secure all messages other than the OpenSecureChannel messages. FIPS 197 define symmetric encryption algorithms that UASC implementations may use. FIPS 180-2 and HMAC define some symmetric signature algorithms.

Table 30 – Symmetric Algorithm Security Header
	Name
	Data Type
	Description

	TokenId
	UInt32
	A unique identifier for the SecureChannel token used to secure the message.

This identifier is returned by the server in an OpenSecureChannel response message. If a Server receives a TokenId which it does not recognize it shall return an appropriate transport layer error.

The security header is always followed by the sequence header which is defined in Table 31. The sequence header ensures that the first encrypted block of every message sent over a channel will start with different data.

Table 31 – Sequence Header
	Name
	Data Type
	Description

	SequenceNumber
	UInt32
	A monotonically increasing sequence number assigned by the sender to each MessageChunk sent over the SecureChannel.

	RequestId
	UInt32
	An identifier assigned by the client to OPC UA request Message. All MessageChunks for the request and the associated response use the same identifier.

SequenceNumbers may not be reused for any TokenId. The token lifetime should be short enough to ensure that this never happens, however, if it does the receiver should treat it as a transport error and force a reconnect.

The SequenceNumber shall also monotonically increase for all messages and shall not wrap around until it is greater than 4294966271 (UInt32.MaxValue – 1024). The first number after the wrap around shall be less than 1024. Note that this requirement means that SequenceNumbers do not reset when a new TokenId is issued. The SequenceNumber shall be incremented by exactly one for each MessageChunk sent unless the communication channel was interrupted and re-established. Gaps are permitted between the SequenceNumber for the last MessageChunk received before the interruption and the SequenceNumber for first MessageChunk received after communication was re-established. Note that the first MessageChunk after a network interruption is always an OpenSecureChannel request or response.

The sequence header is followed by the message body which is encoded with the OPC UA Binary encoding as described in Section 5.2.6. The body may be split across multiple MessageChunks.

Each MessageChunk also has a footer with the fields defined in Table 32.

Table 32 – OPC UA Secure Conversation Message Footer
	Name
	Data Type
	Description

	PaddingSize
	Byte
	The number of padding bytes (not including the byte for the PaddingSize).

	Padding
	Byte[*]
	Padding added to the end of the message to ensure length of the data to encrypt is an integer multiple of the encryption block size.

The value of each byte of the padding is equal to PaddingSize.

	Signature
	Byte[*]
	The signature for the MessageChunk.

The signature includes the all headers, all message data, the PaddingSize and the Padding.

The formula to calculate the amount of padding depends on the amount of data that needs to be sent (called BytesToWrite). The sender shall first calculate the maximum amount of space available in the MessageChunk (called MaxBodySize) using the following formula:

MaxBodySize = PlainTextBlockSize * Floor((MessageChunkSize –

HeaderSize – SignatureSize - 1)/CipherTextBlockSize) –

SequenceHeaderSize;

Where the HeaderSize includes the MessageHeader and the SecurityHeader. The SequenceHeaderSize is always 8 bytes.

During encryption a block with a size equal to PlainTextBlockSize is processed to produce a block with size equal to CipherTextBlockSize. These values depend on the encryption algorithm and may be the same.

The UA message can fit into a single chunk if BytesToWrite is less than or equal to the MaxBodySize. In this case the PaddingSize is calculated with this formula:

PaddingSize = PlainTextBlockSize –
((BytesToWrite + SignatureSize + 1) % PlainTextBlockSize);

If the BytesToWrite is greater than MaxBodySize the sender shall write MaxBodySize bytes with a PaddingSize of 0. The remaining BytesToWrite – MaxBodySize bytes shall be sent in subsequent MessageChunks.
The PaddingSize and Padding fields are not present if the MessageChunk is not encrypted.
The Signature field is not present if the MessageChunk is not signed.

6.4.3 MessageChunks and Error Handling

Message chunks are sent as they are encoded. Message chunks belonging to the same Message shall be sent sequentially.
If an error occurs creating a chunk then the sender shall send a final chunk to the receiver that tells the receiver that an error occurred and that it should discard the previous chunks. The sender indicates that the chunk contains an error by setting the IsFinal flag to ‘A’ (for Abort). Table 33 specifies the contents of the message abort chunk.

Table 33 – OPC UA Secure Conversation Message Abort Body
	Name
	Data Type
	Description

	Error
	UInt32
	The numeric code for the error.

This shall be one of the values listed in Table 40.

	Reason
	String
	A more verbose description of the error.

This string shall not be more than 4096 characters.

A client shall ignore strings that are longer than this.

The receiver shall check the security on the abort chunk before processing it. If everything is ok then the receiver shall ignore the message but shall not close the SecureChannel. The client shall report the error back to the application as StatusCode for the request. If the client is the sender then it shall report the error without waiting for a response from the server.

6.4.4 Establishing a SecureChannel

Most messages require a SecureChannel to be established. A client does this by sending an OpenSecureChannel request to the server. The server shall validate the message and the ClientCertificate and return an OpenSecureChannel response. Some of the parameters defined for the OpenSecureChannel service are specified in the security header (see Clause 6.4.2) instead of the body of the message. For this reason, the OpenSecureChannel service is not the same as the one specified in the Part 4. Table 34 lists the parameters that appear in the body of the message.

Table 34 – OPC UA Secure Conversation OpenSecureChannel Service
	Name
	Data Type

	Request
	

	
RequestHeader
	RequestHeader

	
ClientProtocolVersion
	UInt32

	
RequestType
	SecurityTokenRequestType

	
SecurityMode
	MessageSecurityMode

	
ClientNonce
	ByteString

	
RequestedLifetime
	Int32

	
	

	Response
	

	
ResponseHeader
	ResponseHeader

	
ServerProtocolVersion
	UInt32

	
SecurityToken
	ChannelSecurityToken

	

SecureChannelId
	UInt32

	

TokenId
	UInt32

	

CreatedAt
	DateTime

	

RevisedLifetime
	Int32

	
ServerNonce
	ByteString

The ClientProtocolVersion and ServerProtocolVersion parameters are not defined in Part 4 and are added to the message to allow backward compatibility if the OPC UA-SecureConversation protocol needs to be updated in the future. Receivers always accept numbers greater than the latest version that they support. The receiver with the higher version number is expected to ensure backward compatibility.

If the OPC UA-SecureConversation protocol is used with the OPC UA-TCP protocol (see Clause 7.1) then the version numbers specified in the OpenSecureChannel messages shall be the same as the version numbers specifed in the OPC UA-TCP protocol Hello/Acknowledge messages. The receiver shall close the channel and report a Bad_ProtocolVersionUnsupported error if there is a mismatch.

The server shall return an error response as described in Clause 5.3 of Part 4 if there are any errors with the parameters specified by the client.

The RevisedLifetime tells the client when it shall renew the token by sending another OpenSecureChannel request. The client shall continue to accept the old token until it receives the OpenSecureChannel response. The server has to accept requests secured with the old token until that token expires or until it receives a message from the Client secured with the new token. The Server shall reject renew requests if the SenderCertificate is not the same as the one used to create the SecureChannel or if there is a problem decrypting or verifying the signature. The Client shall abandon the SecureChannel if the Certificate used to sign the response is not the same as the Certificate used to encrypt the request.

The OpenSecureChannel messages are not signed or encrypted if the SecurityMode is None. The nonces are ignored and should be set to null. The SecureChannelId and the TokenId are still assigned but no security is applied to messages exchanged via the channel. The token shall still be renewed before the RevisedLifetime expires. Receivers shall still ignore invalid or expired TokenIds.

If the communication channel breaks the Server shall maintain the secure channel long enough to allow the client to reconnect. The ReviseLifetime parameter also tells the client how long the Server will wait. If the Client cannot reconnect within that period it shall assume the SecureChannel has been closed.

The AuthenticationToken in the RequestHeader shall be set to null.

If an error occurs after the Server has verified message security if shall returned a ServiceFault instead of a OpenSecureChannel response. The ServiceFault message is described in Part 4 Section 7.24.

If the SecurityMode is not None then the Server shall verify that a SenderCertificate and a ReceiverCertificateThumbprint were specified in the SecurityHeader.
6.4.5 Deriving Keys

Once the SecureChannel is established the messages are signed and encrypted with keys derived from the nonces exchanged in the OpenSecureChannel call. These keys are derived by passing the nonces to a pseudo-random function which produces a sequence of bytes from a set of inputs. A pseudo-random function is represented by the following function declaration:

Byte[] PRF(Byte[] secret, Byte[] seed, Int32 length, Int32 offset)
Where length is the number of bytes to return and offset is a number of bytes from the beginning of the sequence.

The lengths of the keys that need to be generated depend on the SecurityPolicy used for the channel. The following information is specified by the SecurityPolicy:

a) SigningKeyLength (from the DerivedSignatureKeyLength);

b) EncryptingKeyLength (implied by the SymmetricEncryptionAlgorithm);

c) EncryptingBlockSize (implied by the SymmetricEncryptionAlgorithm);

The parameters passed to the pseudo random function are specified in Table 35.

Table 35 – Cryptography Key Generation Parameters
	Key
	Secret
	Seed
	Length
	Offset

	ClientSigningKey
	ServerNonce
	ClientNonce
	SigningKeyLength
	0

	ClientEncryptingKey
	ServerNonce
	ClientNonce
	EncryptingKeyLength
	SigningKeyLength

	ClientInitializationVector
	ServerNonce
	ClientNonce
	EncryptingBlockSize
	SigningKeyLength+ EncryptingKeyLength

	ServerSigningKey
	ClientNonce
	ServerNonce
	SigningKeyLength
	0

	ServerEncryptingKey
	ClientNonce
	ServerNonce
	EncryptingKeyLength
	SigningKeyLength

	ServerInitializationVector
	ClientNonce
	ServerNonce
	EncryptingBlockSize
	SigningKeyLength+ EncryptingKeyLength

The client keys are used to secure messages sent by the client. The server keys are used to secure messages sent by the server.

The SSL/TLS specification defines a pseudo random function called P_SHA1 which is used for some SecurityProfiles. The P_SHA1 algorithm is defined as follows:

P_SHA1(secret, seed) = HMAC_SHA1(secret, A(1) + seed) +

 HMAC_SHA1(secret, A(2) + seed) +

 HMAC_SHA1 (secret, A(3) + seed) + ...

Where A(n) is defined as:
 A(0) = seed

 A(n) = HMAC_SHA1(secret, A(n-1))
+ indicates that the results are appended to previous results.

6.4.6 Verifying Message Security

The contents of the MessageChunk shall not be interpreted until the message is decrypted and the signature and sequence number verified.

If error occurs during message verification the receiver shall close the communication channel. If the receiver is the Server it shall also send a transport error message before closing the channel. Once the channel is closed the Client shall attempt to re-open the channel and request a new token by sending an OpenSecureChannel request. The mechanism for sending transport errors to the Client depends on the communication channel.

The receiver shall first check the SecureChannelId. This value may be 0 if the message is an OpenSecureChannel request. For other messages it shall report a Bad_SecureChannelUnknown error if the SecureChannelId is not recognized. If the message is an OpenSecureChannel request and the SecureChannelId is not 0 then the SenderCertificate shall be the same as the SenderCertificate used to create the channel.

If the message is secured with asymmetric algorithms then the receiver shall verify that it supports the requested SecurityPolicy. If the message is the response sent to the Client then the SecurityPolicy shall be the same as the one specified in the request. In the Server the SecurityPolicy shall be the same as the one used to originally create the SecureChannel. The receiver shall then verify the SenderCertificate using the rules defined in Part 4 Section 6.1.4. The receiver shall report the appropriate error if Certificate validation fails. The receiver shall verify the ReceiverCertificateThumbprint and report a Bad_CertificateUnknown error if it does not recognize it.

If the message is secured with symmetric algorithms then a Bad_SecureChannelTokenUnknown error shall be reported if the TokenId refers to a token that has expired or is not recognized.

If decryption or signature validation fails then a Bad_SecurityChecksFailed error is reported. If an implementation allows multiple SecurityModes to be used the receiver shall also verify that the message was secured properly as required by the SecurityMode specified in the OpenSecureChannel request.

After the security validation is complete the receiver shall verify the RequestId and the SequenceNumber. If these checks fail a Bad_SecurityChecksFailed error is reported. The RequestId only needs to be verified by the Client since only the Client knows if it is valid or not.
At this point the SecureChannel knows it is dealing with an authenticated message that was not tampered with or resent. This means the SecureChannel can return a secured error response if any further problems are encountered.

Stacks that implement UASC shall have a mechanism to log errors when invalid messages are discarded. This mechanism is intended for developers, systems integrators and administrators to debug network system configuration issues and to detect attacks on the network.
7 Transport Protocols

7.1 OPC UA TCP

7.1.1 Overview

OPC UA TCP is a simple TCP based protocol that establishes a full duplex channel between a client and server. This protocol has two key features that differentiate it from HTTP. First, this protocol allows responses to be returned in any order. Second, this protocol allows responses to be returned on a different socket if communication failures causes temporary socket interruption.

The OPC UA TCP protocol is designed to work with the SecureChannel implemented by a layer higher in the stack. For this reason, the OPC UA TCP protocol defines its interactions with the SecureChannel in addition to the wire protocol.

7.1.2 Message Structure

Every OPC UA TCP message has a header with the fields defined in Table 36.

Table 36 – OPC UA TCP Message Header
	Name
	Type
	Description

	MessageType
	Byte[3]
	A three byte ASCII code that identifies the message type.

The following values are defined at this time:

HEL

a Hello message.

ACK
an Acknowledge message.

ERR
an Error message.

The SecureChannel layer defines additional values which the OPC UA TCP layer shall accept.

	Reserved
	Byte[1]
	Ignored. shall be set to the ASCII codes for ‘F’ if the MessageType is one of the values supported by the OPC UA TCP protocol.

	MessageSize
	UInt32
	The length of the message, in bytes. This value includes the 8 bytes for the message header.

The layout of the OPC UA TCP message header is intentionally identical to the first 8 bytes of the OPC UA Secure Conversation message header defined in Table 28. This allows the OPC UA TCP layer to extract the SecureChannel messages from the incoming stream even if it does not understand their contents.

The OPC UA TCP layer shall verify the MessageType and make sure the MessageSize is less than the negotiated ReceiveBufferSize before passing any message onto the SecureChannel layer.

The Hello message has the additional fields shown in Table 37.

Table 37 – OPC UA TCP Hello Message
	Name
	Data Type
	Description

	ProtocolVersion
	UInt32
	The latest version of the OPC UA TCP protocol supported by the Client.

The Server may reject the Client by returning Bad_ProtocolVersionUnsupported.

If the Server accepts the connection is responsible for ensuring that it returns messages that conform to this version of the protocol.

The Server shall always accept versions greater than what it supports.

	ReceiveBufferSize
	UInt32
	The largest message that the sender can receive.

This value shall be greater than 8192 bytes.

	SendBufferSize
	UInt32
	The largest message that the sender will send.

This value shall be greater than 8192 bytes.

	MaxMessageSize
	UInt32
	The maximum size for any response message. The server shall abort the message with a Bad_ResponseTooLarge StatusCode if a response message exceeds this value.

The mechanism for aborting messages is described fully in Clause 6.4.3.

The message size is calculated using the unencrypted message body.

A value of zero indicates that the Client has no limit.

	MaxChunkCount
	UInt32
	The maximum number of chunks in any response message.

The server shall abort the message with a Bad_ResponseTooLarge StatusCode if a response message exceeds this value.

The mechanism for aborting messages is described fully in Clause 6.4.3.

A value of zero indicates that the Client has no limit.

	EndpointUrl
	String
	The URL of the Endpoint which the Client wished to connect to.

The encoded value shall be less than 4096 bytes.

Servers shall return a Bad_TcpUrlRejected error and close the connection if the length exceeds 4096 or if it does not recognize the resource identified by the URL.

The EndpointUrl parameter is used to allow multiple servers to share the same port on a machine. The process listening (a.k.a. proxy) on the port would connect to the Server identified by the EndpointUrl and would forward all messages to the Server via this socket. If one socket closes then the proxy shall close the other socket.

The Acknowledge message has the additional fields shown in Table 38.

Table 38 – OPC UA TCP Acknowledge Message
	Name
	Type
	Description

	ProtocolVersion
	UInt32
	The latest version of the OPC UA TCP protocol supported by the Server.

If the Client accepts the connection is responsible for ensuring that it sends messages that conform to this version of the protocol.

The Client shall always accept versions greater than what it supports.

	ReceiveBufferSize
	UInt32
	The largest message that the sender can receive.
This value shall not be larger than what the Client requested in the Hello message.
This value shall be greater than 8192 bytes.

	SendBufferSize
	UInt32
	The largest message that the sender will send.

This value shall not be larger than what the Client requested in the Hello message.
This value shall be greater than 8192 bytes.

	MaxMessageSize
	UInt32
	The maximum size for any request message. The client shall abort the message with a Bad_RequestTooLarge StatusCode if a request message exceeds this value.

The mechanism for aborting messages is described fully in Clause 6.4.3.

The message size is calculated using the unencrypted message body.

A value of zero indicates that the Server has no limit.

	MaxChunkCount
	UInt32
	The maximum number of chunks in any request message.

The client shall abort the message with a Bad_RequestTooLarge StatusCode if a request message exceeds this value.

The mechanism for aborting messages is described fully in Clause 6.4.3.

A value of zero indicates that the Server has no limit.

The Error message has the additional fields shown in Table 39.

Table 39 – OPC UA TCP Error Message
	Name
	Type
	Description

	Error
	UInt32
	The numeric code for the error.

This shall be one of the values listed in Table 40.

	Reason
	String
	A more verbose description of the error.

This string shall not be more than 4096 characters.

A client shall ignore strings that are longer than this.

Figure 14 illustrates the structure of a message placed on the wire. This includes also illustrates how the message elements defined by the OPC UA Binary Encoding mapping (see 5.2) and the OPC UA Secure Conversation mapping (see 6.4) relate to the OPC UA TCP messages.

The socket is always closed gracefully by the Server after it sends an Error message.

[image: image14.emf]Chunk 1 Chunk 2 Chunk 3

ExtensionObject Prefix

Message Header (Intermediate Chunk)

Message Header (Final Chunk)

Security Header

Message Signature

Padding

Encrypted Data

Signed Data

Chunk 1

Chunk 2

Chunk 3

Message

Sequence Header

Figure 14 – OPC UA TCP Message Structure
7.1.3 Establishing a Connection

Connections are always initiated by the client which creates the socket before it sends the first OpenSecureChannel request. After creating the socket the first message sent shall be a Hello which specifies the buffer sizes that the client supports. The server shall respond with an Acknowledge message which completes the buffer negotiation. The negotiated buffer size shall be reported to the SecureChannel layer. The negotiated SendBufferSize specifies the size of the MessageChunks to use for messages sent over the connection.

The Hello/Acknowledge messages may only be sent once. If they are received again the receiver shall report an error and close the socket. Servers shall close any socket after a period of time if it does not receive a Hello message. This period of time shall be configurable and have a default value which does not exceed two minutes.

The client sends the OpenSecureChannel request once it receives the Acknowledge back from the server. If the server accepts the new channel it shall associate the socket with the SecureChannelId. The server uses this association to determine which socket to use when it has to send a response to the client. The client does the same when it receives the OpenSecureChannel response.

The sequence of messages when establishing a OPC UA TCP connection are shown in Figure 15.

[image: image15.emf]Hello

Open Secure Channel Request

Create Session

Client Secure Channel TCP TCP Secure Channel Server

Acknowledge

Open Secure Channel Response

Open Socket

Figure 15 – Establishing a OPC UA TCP Connection
The Server application does not do any processing while the SecureChannel is negotiated, however, the Server application shall to provide the Stack with the list of trusted Certificates. The Stack shall provide notifications to the Server application whenever it receives an OpenSecureChannel request. These notifications shall include the OpenSecureChannel or Error response returned to the Client.

7.1.4 Closing a Connection

The client closes the connection by sending a CloseSecureChannel request and closing the socket gracefully. When the server receives this message it shall release all resources allocated for the channel. The server does not send a CloseSecureChannel response.
If security verification fails for the CloseSecureChannel message then the Server shall report the error and close the socket. The Server shall allow the Client to attempt to reconnect.

The sequence of messages when closing a OPC UA TCP connection are shown in Figure 16.

[image: image16.emf]Close Secure Channel Request

Client Secure Channel TCP TCP Secure Channel Server

Close Socket

Figure 16 – Closing a OPC UA TCP Connection
The Server application does not do any processing when the SecureChannel is closed, however, the Stack shall provide notifications to the Server application whenever a CloseSecureChannel request is received or when the Stack cleans up an abandoned SecureChannel.

7.1.5 Error Handling

When a fatal error occurs the server shall send an Error message to the client and close the socket. When a client encounters one of these errors, it shall also close the socket but does not send an Error message. After the socket is closed a client shall try to reconnect automatically using the mechanisms described in Clause 7.1.6.

The possible OPC UA TCP errors are defined in Table 40.

Table 40 – OPC UA TCP Error Codes
	Name
	Description

	TcpServerTooBusy
	The server cannot process the request because it is too busy.

It is up to the server to determine when it needs to return this message.

A server can control the how frequently a client reconnects by waiting to return this error.

	TcpMessageTypeInvalid
	The type of the message specified in the header invalid.

Each message starts with a 4 byte sequence of ASCII values that identifies the message type.

The server returns this error if the message type is not accepted.

Some of the message types are defined by the SecureChannel layer.

	TcpSecureChannelUnknown
	The SecureChannelId and/or TokenId are not currently in use.

This error is reported by the SecureChannel layer.

	TcpMessageTooLarge
	The size of the message specified in the header is too large.

The server returns this error if the message size exceeds its maximum buffer size or the receive buffer size negotiated during the Hello/Acknowledge exchange.

	TcpTimeout
	A timeout occurred while accessing a resource.

It is up to the server to determine when a timeout occurs.

	TcpNotEnoughResources
	There are not enough resources to process the request.

The server returns this error when it runs out of memory or encounters similar resource problems.

A server can control the how frequently a client reconnects by waiting to return this error.

	TcpInternalError
	An internal error occurred.

This should only be returned if an unexpected configuration or programming error occurs.

	TcpUrlRejected
	The Server does not recognize the EndpointUrl specified.

	SecurityChecksFailed
	The message was rejected because it could not be verified.

	RequestInterrupted
	The request could not be sent because of a network interruption.

	RequestTimeout
	Timeout occurred while processing the request.

	SecureChannelClosed
	The secure channel has been closed.

	SecureChannelTokenUnknown
	The token has expired or is not recognized.

	CertificateUntrusted
	The sender certificate is not trusted by the receiver.

	CertificateTimeInvalid
	The sender certificate has expired or is not yet valid.

	CertificateIssuerTimeInvalid
	The issuer for the sender certificate has expired or is not yet valid.

	CertificateUseNotAllowed
	The sender’s certificate may not be used for establishing a secure channel.

	CertificateIssuerUseNotAllowed
	The issuer certificate may not be used as a Certificate Authority.

	CertificateRevocationUnknown
	Could not verify the revocation status of the sender’s certificate.

	CertificateIssuerRevocationUnknown
	Could not verify the revocation status of the issuer certificate.

	CertificateRevoked
	The sender certificate has been revoked by the issuer.

	IssuerCertificateRevoked
	The issuer certificate has been revoked by its issuer.

	CertificateUnknown
	The receiver certificate thumbprint is not recognized by the receiver.

The numeric values for these error codes are defined in A.2.
7.1.6 Error Recovery
Once the SecureChannel has been established, the client shall go into a error recovery state whenever the socket breaks or if the server returns an OPC UA TCP Error message as defined in Table 39. While in this state the client periodically attempts to reconnect to the server. If the reconnect succeeds the client sends a Hello followed by an OpenSecureChannel request (see Clause 6.4.4) that re-authenticates the client and associates the new socket with the existing SecureChannel.

The client shall wait between reconnect attempts. The first reconnect shall happen immediately. After that the wait period should start as 1 second and increase gradually to a maximum of 2 minutes. One sequence would double the period each attempt until reaching the maximum. In other words, the client would use the following wait periods: { 0, 1, 2, 4, 8, 16, 32, 64, 120, 120, …}. The client shall keep attempting to reconnect until the SecureChannel is closed or after the period equal to the RevisedLifetime of the last SecurityToken elapses.

The stack in the server should not discard responses if there is no connection immediately available. It should wait and see if the client creates a new socket. It is up to the server stack implementation to decide how long it will wait and how many responses it is willing to hold onto.

The stack in the Client shall not fail requests that have already been sent and are waiting for a response when the socket is closed, however, these requests may timeout and report a Bad_TcpRequestTimeout error to the application. If the client sends a new request the stack shall either buffer the request or return a Bad_TcpRequestInterrupted error. The client can stop the reconnect process by closing the SecureChannel.

The Server may abandon the SecureChannel before a Client is able to reconnect. If this happens the Client will get a Bad_TcpSecureChannelUnknown error in response to the OpenSecureChannel request. The stack shall return this error to the application that can attempt to create a new SecureChannel.

The negotiated buffer sizes should never change when a connection is recovered, however, the buffer sizes are negotiated before the server knows whether the socket is being used for an existing SecureChannel or a new one. A client shall treat this as a fatal error, closes the SecureChannel and returns an Bad_TcpSecureChannelClosed error to the application.

The sequence of messages when recovering an OPC UA TCP connection are shown in Figure 17.

[image: image17.emf]Hello/Acknowledge

Open Secure Channel

Create Session

Hello/Acknowledge

Publish 2

Close Secure Channel

Client Secure Channel TCP TCP Secure Channel Server

Close Session

Open Secure Channel

Error

Error

Publish 1

Publish 1 (Response)

Close Socket

Figure 17 – Recovering an OPC UA TCP Connection

7.2 SOAP/HTTP

7.2.1 Overview

SOAP describes an XML based syntax for exchanging messages between applications. OPC UA messages are exchanged using SOAP by serializing the OPC UA messages using one of the supported encodings described in Clause 5 and inserting that encoded message into the body of the SOAP message.

All OPC UA applications that support the SOAP/HTTP transport shall support SOAP 1.2 as described in SOAP Part 1.

All OPC UA messages are exchanged using the request-response message exchange pattern defined in SOAP Part 2 even if the OPC UA service does not specify any output parameters. In these cases, the server shall return an empty response message that tells the client that no errors occurred.

WS-I Basic Profile 1.1 defines best practices when using SOAP messages which will help ensure interoperability. All OPC UA implementations shall conform to this specification.

HTTP is the network communication protocol used to exchange SOAP messages. An OPC UA service request message is always sent by the client in the body of an HTTP POST request. The server returns an OPC UA response message in the body of the HTTP response. The HTTP binding for SOAP is described completely in SOAP Part 2.

HTTPS is a variant of HTTP that encrypts and/or signs HTTP messages using the SSL/TLS protocol. HTTPS provides a efficient way to encrypt data sent across the network when two applications can communicate directly without intermediaries.
OPC UA does not define any SOAP headers, however, SOAP messages containing OPC UA messages will include headers used by the other WS specifications in the stack.

SOAP faults are returned only for errors that occurred with in the SOAP stack. Errors that occur within in the application are returned as OPC UA error response messages as described in Clause 5.3 of Part 4.

WS Addressing defines standard headers used to route SOAP messages through intermediaries. Implementations shall support the WS-Addressing headers listed Table 41.

Table 41 – WS-Addressing Headers

	Header
	Request
	Response

	wsa:To
	Required
	Optional

	wsa:From
	Optional
	Optional

	wsa:ReplyTo
	Required
	Not Used

	wsa:Action
	Required
	Required

	wsa:MessageID
	Required
	Optional

	wsa:RelatesTo
	Not Used
	Required

Note that WS-Addressing defines standard URIs to use in the ReplyTo and From headers when a client does not have an externally accessible endpoint. In these cases, the SOAP response is always returned to the client using the same communication channel that sent the request.
OPC UA servers shall ignore the wsa:FaultTo header if it is specified in a request.

7.2.2 XML Encoding

The OPC UA XML Encoding specifies a way to represent an OPC UA message as an XML element. This element is added to the SOAP message as the only child of the SOAP body element.

If an error occurs in the server while parsing the request body, the server may return a SOAP fault or it may return an OPC UA error response.

The SOAP Action associated with an XML encoded request message always has the form:

http://opcfoundation.org/UA/<service name>

Where <service name> is the name of the OPC UA service being invoked.

The SOAP Action associated with an XML encoded response message always has the form:
http://opcfoundation.org/UA/<service name>Response

7.2.3 OPC UA Binary Encoding

The OPC UA Binary Encoding specifies a way to represent an OPC UA message as a sequence of bytes. These bytes sequences shall be encoded in the SOAP body using the Base64data format.

The Base64 data format is a UTF-7 representation of binary data that is less efficient than raw binary data, however, many OPC UA applications that exchange messages using SOAP will find that encoding OPC UA messages in OPC UA Binary and then encoding the binary in Base64 is more efficient than encoding everything in XML.

The WSDL definition for a UA Binary encoded request message is:
<xs:element name="InvokeService" type="xs:base64Binary" nillable="true" />

<wsdl:message name="InvokeServiceMessage">

 <wsdl:part name="InvokeService" element="tns:InvokeService" />

</wsdl:message>

The SOAP Action associated with a OPC UA Binary encoded request message always has the form:

http://opcfoundation.org/UA/InvokeService

The WSDL definition for an OPC UA Binary encoded response message is:
<xs:element name="InvokeServiceResponse" type="xs:base64Binary"
 nillable="true" />

<wsdl:message name="InvokeServiceResponseMessage">

 <wsdl:part name="InvokeServiceResponse" element="tns:InvokeServiceResponse" />

</wsdl:message>

The SOAP Action associated with an OPC UA Binary encoded response message always has the form:

http://opcfoundation.org/UA/InvokeServiceResponse
7.3 Well Known Addresses

The Local Discovery Server (LDS) is a UA Server that implements the Discovery Service Set defined in Part 4. If an LDS is installed on a machine it shall use one or more of the well-known addresses defined in Table 42.
Table 42 – Well Known Addresses for Local Discovery Servers

	Transport Mapping
	URL
	Notes

	SOAP/HTTP
	http://localhost/UADiscovery
	May require integration with a web server like IIS.

	SOAP/HTTP
	http://localhost:52601/UADiscovery
	Alternate if it Port 80 cannot be used by the LDS.

	UA TCP
	opc.tcp://localhost:4840/UADiscovery
	

UA Applications that make use of the LDS shall allow Administrators to change the well known addresses used within a system.
The endpoint used by servers to register with the LDS shall be the base address with the path “/registration” appended to it (e.g. http://localhost/UADiscovery/registration). UA Servers shall allow adminstrators to configure the address to use for registration.

Each UA Server application implements the Discovery Service Set. If the UA Server requires a different address for this endpoint it shall create the address by appending the path “/discovery” to its base address.
8 Normative Contracts
8.1 OPC Binary Schema

The normative contract for the OPC UA Binary encoded messages is an OPC Binary Schema. This file defines the structure of all types and messages. The syntax for an OPC Binary Type Schema is described in Appendix B of Part 3. This schema captures normative names for types and their fields as well the order the fields appear when encoded. The data type of each field is also captured.
8.2 XML Schema and WSDL

The normative contract for the OPC UA XML encoded messages is an XML Schema. This file defines the structure of all types and messages. This schema captures normative names for types and their fields as well the order the fields appear when encoded. The data type of each field is also captured.

The normative contract for message sent via the SOAP/HTTP TransportProtocol is a WSDL that includes XML Schema for the OPC UA XML encoded messages. It also defines the port types for OPC UA Servers and DiscoveryServers.

Links to the WSDL and XML Schema files can be found in Annex C.
Annex A Constants

A.1 Attribute Ids

Table 42 – Identifiers Assigned to Attributes

	Attribute
	Identifier

	NodeId
	1

	NodeClass
	2

	BrowseName
	3

	DisplayName
	4

	Description
	5

	WriteMask
	6

	UserWriteMask
	7

	IsAbstract
	8

	Symmetric
	9

	InverseName
	10

	ContainsNoLoops
	11

	EventNotifier
	12

	Value
	13

	DataType
	14

	ValueRank
	15

	ArrayDimensions
	16

	AccessLevel
	17

	UserAccessLevel
	18

	MinimumSamplingInterval
	19

	Historizing
	20

	Executable
	21

	UserExecutable
	22

A.2 Status Codes

This appendix defines the numeric identifiers for all of the StatusCodes defined by the OPC UA Specification. The identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <SubCode>

Where the SymbolName is the literal name for the error code that appears in the specification and the SubCode is numeric value for the SubCode field within a StatusCode (See Clause 7.33 in Part 4). The severity associated with particular code is specified by the prefix (Good, Uncertain or Bad).

The CSV associated with this version of the specification can be found here:

http://www.opcfoundation.org/UA/2008/02/StatusCodes.csv
The most recent set of StatusCodes can be found here:

http://www.opcfoundation.org/UAPart6/StatusCodes.csv
A.3 Numeric Node Ids

This appendix defines the numeric identifiers for all of the numeric NodeIds defined by the OPC UA Specification. The identifiers are specified in a CSV file with the following syntax:
<SymbolName>, <Identifier>, <NodeClass>

Where the SymbolName is either the BrowseName of a Type Node or the BrowsePath for an Instance Node that appears in the specification and the Identifier is numeric value for the NodeId.

The BrowsePath for an instance Node is constructed by appending the BrowseName of the instance Node to BrowseName for the containing instance or type. A ‘_’ character is used to separate each BrowseName in the path. For example, Part 5 defines the ServerType ObjectType Node which has the NamespaceArray Property. The SymbolName for the NamespaceArray InstanceDeclaration within the ServerType declaration is: ServerType_NamespaceArray. Part 5 also defines a standard instance of the ServerType ObjectType with the BrowseName ‘Server’. The BrowseName for the NamespaceArray Property of the standard Server Object is: Server_NamespaceArray.

The NamespaceUri for all NodeIds defined here is http://opcfoundation.org/UA/
The CSV associated with this version of the specification can be found here:

http://www.opcfoundation.org/UA/2008/02/NodeIds.csv
The most recent set of NodeIds can be found here:

http://www.opcfoundation.org/UAPart6/NodeIds.csv
Annex B Type Declarations for the OPC UA Native Mapping

This appendix defines the OPC UA Binary encoding for all DataTypes and Messages defined in the specification. The schema used to describe the type is defined in Appendix C of Part 3.

The OPC UA Binary Schema associated with this version of the specification can be found here:

http://www.opcfoundation.org/UA/2008/02/Types.bsd.xml
The most recent OPC UA Binary Schema can be found here:

http://www.opcfoundation.org/UAPart6/Types.bsd.xml
Annex C WSDL for the XML Mapping

C.1 XML Schema
This appendix defines the XML Schema for all DataTypes and Messages defined in the specification.

The XML Schema associated with this version of the specification can be found here:

http://www.opcfoundation.org/UA/2008/02/Types.xsd
The most recent XML Schema can be found here:

http://www.opcfoundation.org/UAPart6/Types.xsd
C.2 WDSL Port Types

This appendix defines the WSDL Operations and Port Types for all Services defined in Part 4.

The WSDL associated with this version of the specification can be found here:

http://www.opcfoundation.org/UA/2008/02/PortTypes.wsdl
The most recent WSDL can be found here:

http://www.opcfoundation.org/UAPart6/PortTypes.wsdl
This WSDL imports the XML Schema defined in C.1.

C.3 WSDL Bindings

This appendix defines the WSDL Bindings for all Services defined in Part 4.

The WSDL associated with this version of the specification can be found here:

http://www.opcfoundation.org/UA/2008/02/Bindings.wsdl
The most recent WSDL can be found here:

http://www.opcfoundation.org/UAPart6/Bindings.wsdl
This WSDL imports the WSDL defined in C.2.
Annex D Security Settings Management
D.1 Overview
D.2 All UA applications shall support security, however, this requirement means that Adminstrators need to configure the security settings for the UA application. This appendix describes a mechanism which can be used to read and update the security settings for a UA application. All UA applications shall support the mechanism defined in this Annex.
D.3 Certificates
D.4 X509 Certificates with public keys are exchanged as DER encoded blobs as described in Clause 6.2. X509 Certificates with private keys are exchanged as PKCS #12 encoded blobs which are protected by a password.
D.5 Each certificate is uniquely identified by its thumbprint. The subject name or the distinguished subject name may be used to identify a certificate to a human, however, they are not unique.
D.6 Certificates may be peer certificates or issuer certificates. Peer certificates are end-entity certificates which belong to a UA application. Issuer certificates are certification authority (CA) certificates which are used to create other certificates.
D.7 Certificate Stores

D.8 All certificates are placed in a physical store which can be protected from unauthorized access. The implementation of a store can vary and will depend on the application, development tool or operating system. A certificate store may be shared by many applications on the same machine.
D.9 Each certificate store is identified by a store type and path. The same path on different machines identifies a different store.
D.10 CertificateTrust List

D.11 A certificate trust list contains a list of certificates that are trusted by an application. A trust list may be a list of individual certificates or a reference to a certificate store which implies that all certificates in the store belong to the trust list.
D.12 Certificate Revocation List

A certificate revocation list (CRL) contains a list of certificates issued by a CA that are no longer trusted. These lists should be checked before an application can trust a certicated issued by a trusted CA. The format of a CRL is defined by RFC 3280.
Offline CRLs are placed in a local certificate store with the CA certificate. Online CRLs may exist but the protocol depends on the system. An online CRL is identified by a protocol type and a URL.
D.13 Interface Definition
The interface between the UA application and the configuration application is an XML document exchange. The physical mechanism used to exchange the XML documents depends on the UA application and can include: a .NET software API, the operating system clipboard, arguments passed to a command line utility and/or HTTP. It is up to the UA application to ensure that only authorized users are allowed to update the security settings.
UA applications shall support the following commands:
· Import/Export Application Info
· Import/Export ApplicationTrust Lists
· Export Certificate Store

· Import/Delete Certificate
· Import CRL

· Import Private Key
· Import/Export Application Info

This command reads or updates the application information. The application being accessed is identified by the context. The elements of the ApplicationInfo type are described in Table 44.
Table 44 – ApplicationInfo
	Field
	Type
	Description

	ApplicationUri
	String
	The globally unique identifier for the application.
This field can be updated but

	ApplicationName
	String
	A human readable name for the application.
This field is not localized.

	ApplicationType
	ApplicationType
	The type of application.
This field cannot be updated.

	BaseAddresses
	String[]
	The base addresses for endpoints exposed by a server application.
Addresses for unsupported protocols are ignored.

	DiscoveryUrls
	String[]
	The well known URLs for the discovery servers used by a client application.
Servers also use these URLs to discover the registration endpoint.

D.14 Import/Export Application Trust Lists
This command reads or updates the application trust list. The application being accessed is identified by the context. The elements of the ApplicationTrustLists type are described in Table 45.

Table 45 – ApplicationTrustList
	Field
	Type
	Description

	ApplicationCertificate
	CertificateDescription
	The application instance certificate for the application.
This must reference a certificate in a store with a private key.

The Import Private Key command is used to add a new certificate.

	TrustedPeerStore
	CertificateStoreDescription
	The certificate store containing the peers that are trusted.

	TrustedPeerCertificates
	CertificateDescription[]
	A list of peer certificates which are trusted.
This list takes precedence over the TrustedPeerStore.

	TrustedIssuerStore
	CertificateStoreDescription
	The certificate store containing the issuers that are trusted.

	TrustedIssuerCertificates
	CertificateDescription[]
	A list of issuer certificates which are trusted.

This list takes precedence over the TrustedIssuerStore.

	RejectedCertificateStore
	CertificateStoreDescription
	The certificate store containing certificates that have been rejected.

D.15 Export Certificate Store
This command reads the contents of a certificate store. The store being accessed is identified by the CertificateStoreDescription (see Table 46). The certificates are returned as a list of CertificateDescriptions which are described in Table 47.
Table 46 – CertificateStoreDescription
	Field
	Type
	Description

	StoreType
	String
	The type of store.

Well known values are “Windows” or “Directory”.

	StorePath
	String
	The path to the store.

The syntax depends on the StoreType.

	ValidationOptions
	Int32
	The options to use when validating certificates in the store.

The possible options are described in Table 47.

Table 47 – CertificateDescription
	Field
	Type
	Description

	StoreType
	String
	The type of store.

Well known values are “Windows” or “Directory”.

	StorePath
	String
	The path to the store.

The syntax depends on the StoreType.

	SubjectName
	String
	The common name for distinguished name for the certificate.

This value is used to look up the certificate in the store.
It is ignored if the RawData is specified.

	Thumbprint
	String
	The thumbprint for the certificate.

This value is used to look up the certificate in the store.

It is ignored if the RawData is specified.

	RawData
	ByteString
	The DER encoded certificate.
The StoreType/StorePath are not required if this field is specified.

	ValidationOptions
	Int32
	The options to use when validating the certificate.

The possible options are described in Table 47.

	Issuer
	CertificateDescription
	The location of the issuer for the certificate.

This field allows Administrators to specify a complete trust chain.
This field is ignored if it is not consistent with the certificate data.

Table 47 – ValidationOptions
	Field
	Value
	Description

	SuppressCertificateExpired
	0x01
	Ignore errors related to the validity time of the certificate or its issuers.

	SuppressHostNameInvalid
	0x02
	Ignore mismatches between the host name or application uri.

	SuppressUseNotAllowed
	0x04
	Ignore restrictions on the allowed uses for the certificate.

	SuppressRevocationStatusUnknown
	0x08
	Ignore errors if the issuer’s revocation list cannot be found.

	CheckRevocationStatusOnline
	0x10
	Check the revocation status online.

	CheckRevocationStatusOffine
	0x20
	Check the revocation status offline.

	DoNotTrust
	0x40
	The certificates must not be trusted.

D.16 Import/Delete Certificate
This command adds or removes a certificate to/from a store. The store being accessed is identified in the CertificateDescription (See Table 47). The RawData field must be specified if the certificate is being imported.
D.17 Import CRL
This command adds a Certificate Revocation List to a store. The store being accessed is identified in the CertificateRevocationList (See Table 49). The RawData field must be specified if the certificate is being imported.

Table 49 – CertificateRevocationList
	Field
	Type
	Description

	StoreType
	String
	The type of store.

Well known values are “Windows” or “Directory”.

	StorePath
	String
	The path to the store.

The syntax depends on the StoreType.

	IssuerThumbprint
	String
	The thumbprint of the issuer certificate that the CRL belongs to.
The CRL is rejected if the issuer is not found.

	RawData
	ByteString
	The CRL encoded as required by RFC 3280.
This must be signed by the issuer certificate.

	OnlineCrlType
	String
	The protocol to use when checking an online CRL.
Only specified if an online CRL is available.

	OnlineCrlUrl
	String
	The location of the online CRL.
The syntax depends on the OnlineCrlType.

D.18 Import Private Key

This command adds a Private Key to a store. The store being updated is identified in the CertificatePrivateKey (See Table 50). The application must prompt for the password required to decrypt the PFX blob.
Table 50 – CertificatePrivateKey
	Field
	Type
	Description

	StoreType
	String
	The type of store.

Well known values are “Windows” or “Directory”.

	StorePath
	String
	The path to the store.

The syntax depends on the StoreType.

	PfxData
	ByteString
	The PKCS#12 encoded private key.
This value must be password protectd.

� This is the same as the binary representation of the WIN32 FILETIME type, within the OPC UA allowed range. UTC is the timezone used for the starting time

�Mantis #490

�Mantis #410

�Mantis #481

�Mantis #481

�Mantis #481

�Mantis #478

�Mantis #491

�Mantis #410

�Mantis #492

�Mantis #488

�Mantis #492

�Mantis #414

�Mantis #487

�Mantis #482

�Mantis #484

�Mantis #398

�Mantis #344

�Mantis #288

�Mantis #210

�Mantis #288

�Mantis #489

�Mantis #489

�Mantis #364

_1253182721.ppt

0

1

2

3

4

5

6

91

2B

96

72

FA

E6

4A

8D

28

Data1

75

7

8

9

10

B4

11

04

DC

7D

12

13

14

AF

15

Data2

Data3

Data4

63

16

_1283547310.ppt

0

1

2

3

4

5

6

00

00

00

48

74

E6

B0

B4

6F

7

8

9

10

11

12

13

Hot

水

03

01

00

06

Length

Encoding Byte

Namespace

_1283552942.ppt

0

1

2

3

4

01

05

01

04

Identifier

Encoding Byte

Namespace

_1285418555.ppt

Client

Server

RST/SCT (WS-Trust)

BinarySecurityToken (contains Client Public Key)

SecurityToken (encrypted with Server Private Key)

RSTR/SCT (WS-Trust)

CreateSession Request

CreateSession Response

Each DerivedKeyToken contains a Nonce that is used to derived the key from the shared secret

DerivedKeyToken (signing)

DerivedKeyToken (encrypting)

SecurityContextToken (identifier only)

DerivedKeyToken (signing)

DerivedKeyToken (encrypting)

SecurityContextToken (identifier only)

DerivedKeyToken (signing)

DerivedKeyToken (encrypting)

Contains a secret that is used to create the derived keys.

The SecurityContextToken contains a secret created from the entropy provided in the RST and RSTR.

OpenSecureChannel Response

OpenSecureChannel Request

_1283547364.ppt

0

1

2

3

4

5

6

3C

41

3E

48

74

E6

B0

B4

3C

<A>

6F

7

8

9

10

3F

11

41

3E

12

13

Hot

水

0D

00

00

00

Length

14

15

16

17

_1255996109.ppt

0

1

2

3

4

5

6

06

00

00

00

水

B0

B4

42

6F

79

Length

E6

B

o

y

7

8

9

10

_1264797799.ppt

0

72

1

2

Identifier

00

Encoding

_1253184714.ppt

WS Security 1.1

SOAP 1.2

HTTP or HTTPS (SSL/TLS)

WS Trust 1.3

WS Addressing 1.0

WS Secure Conversation 1.3

XML Signature 1.0

XML Encryption 1.0

WS Security Policy 1.2

_1239715776.ppt

Serialization Layer

UA Application

API

Secure Channel Layer

Encoded Message

Transport Layer

Secured Message

Development Platforms

.NET 3.0

ANSI C

JRE 5.0

Data Encodings

UA Binary

UA XML

Security Protocols

WS Secure Conversation

UA Secure Conversation

Transport Protocols

UA TCP

SOAP/HTTP

Security Transforms

Signing

Encryption

WSDL and XML Schema

UA Binary Schema

Client

Server

Mappings

Stack

Wire Protocol

_1245587578.ppt

Chunk 1

Chunk 2

Chunk 3

ExtensionObject Prefix

Message Header (Intermediate Chunk)

Message Header (Final Chunk)

Security Header

Message Signature

Padding

Encrypted Data

Signed Data

Chunk 1

Chunk 2

Chunk 3

Message

Sequence Header

_1250479483.ppt

Close Secure Channel Request

Client

Secure Channel

TCP

TCP

Secure Channel

Server

Close Socket

_1250485909.ppt

Hello/Acknowledge

Open Secure Channel

Create Session

Hello/Acknowledge

Publish 2

Close Secure Channel

Client

Secure Channel

TCP

TCP

Secure Channel

Server

Close Session

Open Secure Channel

Error

Error

Publish 1

Publish 1 (Response)

Close Socket

_1245526047.ppt

Message Header

Security Header

Body

Signature

Data To Sign

Data To Encrypt

Sequence Header

Padding

_1205065772.ppt

00

00

D0

C0

0

1

2

3

4

_1237824433.ppt

Client

Server

OpenSecureChannel Request

Signed with Client Private Key

Encrypted with Server Public Key

AsymmetricSignatureAlgorithm

AsymmetricEncryptionAlgorithm

or

AsymmetricKeyWrapAlgorithm

SymmetricEncryptionAlgorithm

OpenSecureChannel Response

Signed with Server Private Key

Encrypted with Client Public Key

CreateSession Request

Signed with Client Signing Key

Encrypted with Server Encryption Key

SymmetricEncryptionAlgorithm

KeyDerivationAlgorithm

SymmetricSignatureAlgorithm

KeyDerivationAlgorithm

DerivedSignatureKeyLength

CreateSession Response

Signed with Server Signing Key

Encrypted with Client Encryption Key

_1239600791.ppt

Hello

Open Secure Channel Request

Create Session

Client

Secure Channel

TCP

TCP

Secure Channel

Server

Acknowledge

Open Secure Channel Response

Open Socket

_1205065647.ppt

00

CA

9A

3B

0

1

2

3

4

